如何优雅的在VS Code里面使用MySql

前言

如果你是一个小白的话(本人亦是初学),这个编译器和这个插件都能帮到你,跟着配置没什么大问题。如果不是小白的话,也请不要绕道,请帮忙斧正。另外,使用MySQL不止vs code能配置,pycharm,VS之类的都可以。

vs code介绍

Visual Studio Code(简称“VS Code” )是Microsoft在2015年4月30日发布的跨平台源代码编辑器, 可在桌面上运行,并且可用于Windows,macOS和Linux,支持现在很多主流语言(java,python,c/c++,c#,go,php等),做wb等项目,都绕不开vs code,作为一个编译器来说,vs code还很年轻,但是它是成功的,体积小,速度快。让很多程序员爱不释手。vs code支持多国语言,有着丰富的快捷键以及插件。

vs code下载以及语言配置

vs code下载地址
下载相应版本后安装,打开vs code,点击下图所示图标:
在这里插入图片描述
也就是泛白这个图标,点击图中的搜索框,输入chinese,下载中文插件(注意简体繁体)。下载之后右下角会出一个提示,点击它,重启vscode,你就会发现你的语言变成中文啦。

开始配置mysql

MySQL的cmd使用略显麻烦,还要配置环境变量什么的。但是在vs code中,这些问题都不会存在,vs code支持MySQL代码自动补全,高亮,随时修改等。

一,下载插件

插件下载跟下载中文插件步骤一致,打开搜索MySQL,
在这里插入图片描述
如图所示,下载。

二,连接数据库

下载之后下面会出现如图所示图标,点击database图标(如图中圆柱体)
在这里插入图片描述
点击之后点+号,出现如图所示:
在这里插入图片描述
按照输入你的密码(一般IP地址之类的自带了,你只需要输入密码),点击下面的connect就可以成功连接你的数据库了。

三,MySQL在vs code中的使用

点击表名称就可查看表格。
在这里插入图片描述
点击GitHu图标旁边的加号即可快速添加元素,
在这里插入图片描述
往里面写入相应的元素就可以快速添加,添加成功后还会看见相应的MySQL代码(偷懒也能学习,有趣)。
点击表格里面的内容即可快速修改内容。
点击表名称的文件图标,
在这里插入图片描述
这里就可以编写代码了,点击run sql图标
在这里插入图片描述
就可以随时看见你写了什么了。
###关于这个插件的最后
看见GitHub旁边的coffee杯了吗?点一下还会有一个网页,大概就是叫你给他一杯coffee。老外还蛮有意思的。

插件卸载

如果你不想使用这个插件,点击插件图标,点击设置,卸载就可以了。

### 使用Python进行抖音评论的舆情分析 #### 数据收集与预处理 为了对抖音评论进行有效的舆情分析,首先需要获取并清理数据。这通常涉及以下几个方面: - **数据采集**:通过API或其他方式抓取抖音平台上的用户评论。 - **数据清洗**:去除无关字符、HTML标签等干扰项;统一编码格式;删除重复记录。 对于已经准备好并且标注好的数据集,在实际操作前还需要进一步确认其质量以及适用性[^3]。 #### 特征工程 接下来要构建特征向量来表示每条评论的情感倾向。常用的技术包括但不限于词袋模型(Bag of Words),TF-IDF加权方案,或者是更先进的基于深度学习的语言表征方法如BERT等。 #### 模型训练与评估 选择合适的机器学习算法或神经网络架构来进行分类任务。可以考虑支持向量机(SVM)、随机森林(Random Forests)、逻辑回归(Logistic Regression)或是LSTM/RNN这样的序列预测器。利用交叉验证技术调整超参数,并最终挑选出表现最佳的那个作为生产环境下的解决方案。 #### 结果可视化 最后一步是对所得结论做出直观展示。借助Matplotlib、Seaborn甚至是Dash这类交互式仪表盘工具包能够帮助更好地传达信息给决策者们看懂这些趋势变化背后的意义所在。 下面给出一段简单的代码片段用于说明上述流程中的部分环节——即读入CSV文件形式存储下来的评论文本,并对其进行基础的情绪打分计算(正面/负面)。注意这里仅作为一个入门级例子提供参考价值而已。 ```python import pandas as pd from textblob import TextBlob # 加载数据 df = pd.read_csv('douyin_comments.csv') def analyze_sentiment(text): analysis = TextBlob(text) if analysis.sentiment.polarity > 0: return 'Positive' elif analysis.sentiment.polarity == 0: return 'Neutral' else: return 'Negative' # 应用函数到DataFrame列上 df['Sentiment'] = df['comment'].apply(analyze_sentiment) print(df[['comment', 'Sentiment']].head()) ``` 此段脚本依赖于`pandas`库完成表格化数据的操作管理,而具体的情感判断则交给了第三方自然语言处理模块`TextBlob`负责执行。当然这只是最简单的一种实现思路,针对更加复杂的应用场景可能还需引入更多高级别的NLP组件和服务接口配合工作才行[^1]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值