算法设计与分析之概率算法习题

1 随机快速排序

#include <iostream>
#include <cstdlib> // 用于rand()和srand()
#include <ctime>   // 用于time()

using namespace std;

// 交换两个数的函数
void swap(int& a, int& b) {
    int temp = a;
    a = b;
    b = temp;
}

// 随机选择pivot并将其放到末尾
int partition(int arr[], int low, int high) {
    // 随机选择一个索引作为pivot索引
    int pivotIndex = low + rand() % (high - low + 1);
    
    // 将随机选择的pivot与最后一个元素交换
    swap(arr[pivotIndex], arr[high]);

    // 以最后一个元素为pivot进行分区
    int pivot = arr[high];
    int i = low - 1;

    for (int j = low; j <= high - 1; j++) {
        if (arr[j] < pivot) {
            i++;
            swap(arr[i], arr[j]);
        }
    }
    swap(arr[i + 1], arr[high]);
    return i + 1;
}

// 随机快速排序
void randomQuickSort(int arr[], int low, int high) {
    if (low < high) {
        // 执行划分操作
        int pi = partition(arr, low, high);

        // 递归对左边部分和右边部分排序
        randomQuickSort(arr, low, pi - 1);
        randomQuickSort(arr, pi + 1, high);
    }
}

// 打印数组
void printArray(int arr[], int size) {
    for (int i = 0; i < size; i++) {
        cout << arr[i] << " ";
    }
    cout << endl;
}

int main() {
    srand(time(0)); // 初始化随机数种子
    int arr[] = {10, 7, 8, 9, 1, 5};
    int n = sizeof(arr) / sizeof(arr[0]);

    cout << "原始数组: " << endl;
    printArray(arr, n);

    // 调用随机快速排序
    randomQuickSort(arr, 0, n - 1);

    cout << "排序后的数组: " << endl;
    printArray(arr, n);

    return 0;
}

解析:

  1. partition函数:这个函数的作用是执行分区操作。为了实现随机快速排序,在划分过程中,随机选择一个元素作为pivot,并将它与最后一个元素交换。然后用该pivot进行标准的分区操作,把小于pivot的元素放在左边,大于pivot的放在右边。

  2. swap函数:用于交换数组中的两个元素。我们在随机选择pivot时会用到它,以交换随机选中的pivot与数组的末尾元素。

  3. randomQuickSort函数:这是主递归函数。它依次递归对左子数组和右子数组进行排序。通过递归调用,逐步将数组划分为更小的部分,直到子数组长度为1。

  4. 随机数种子:在main函数中,我们使用srand(time(0))初始化随机数生成器,确保每次运行时产生不同的随机数序列。

  5. printArray函数:简单的打印数组函数,用于在排序前后显示数组内容。

工作流程:

  • 在每次调用partition时,程序会随机选择一个数组元素作为pivot,减少了快速排序在遇到已经排序或接近排序的数组时退化为O(n²)的概率。通过随机化pivot,平均时间复杂度仍为O(n log n)。

这个随机化快速排序可以更有效地应对某些特定的输入情况,从而提高算法的整体性能。

2 随机基于划分的选择程序 

#include <iostream>
#include <cstdlib> // 用于rand()和srand()
#include <ctime>   // 用于time()

using namespace std;

// 交换两个数的函数
void swap(int& a, int& b) {
    int temp = a;
    a = b;
    b = temp;
}

// 随机选择pivot并将其放到末尾
int partition(int arr[], int low, int high) {
    // 随机选择一个索引作为pivot索引
    int pivotIndex = low + rand() % (high - low + 1);
    
    // 将随机选择的pivot与最后一个元素交换
    swap(arr[pivotIndex], arr[high]);

    // 以最后一个元素为pivot进行分区
    int pivot = arr[high];
    int i = low - 1;

    for (int j = low; j <= high - 1; j++) {
        if (arr[j] < pivot) {
            i++;
            swap(arr[i], arr[j]);
        }
    }
    swap(arr[i + 1], &arr[high]);
    return i + 1;
}

// 随机基于划分的选择算法,查找数组中第k小的元素
int randomSelect(int arr[], int low, int high, int k) {
    if (low == high) {
        return arr[low];
    }

    // 执行划分操作
    int pivotIndex = partition(arr, low, high);

    // 计算pivot的位置在数组中的相对序号
    int length = pivotIndex - low + 1;

    if (k == length) {
        return arr[pivotIndex];  // 如果pivot就是第k小的元素
    } else if (k < length) {
        return randomSelect(arr, low, pivotIndex - 1, k);  // 在左子数组中查找
    } else {
        return randomSelect(arr, pivotIndex + 1, high, k - length);  // 在右子数组中查找
    }
}

// 打印数组
void printArray(int arr[], int size) {
    for (int i = 0; i < size; i++) {
        cout << arr[i] << " ";
    }
    cout << endl;
}

int main() {
    srand(time(0)); // 初始化随机数种子
    int arr[] = {10, 4, 5, 8, 6, 11, 26};
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 3; // 查找第k小的元素

    cout << "原始数组: " << endl;
    printArray(arr, n);

    // 查找第k小的元素
    int result = randomSelect(arr, 0, n - 1, k);
    cout << "数组中第 " << k << " 小的元素是: " << result << endl;

    return 0;
}

 3 随机洗牌算法

 

#include <iostream>
#include <cstdlib> // 用于rand()和srand()
#include <ctime>   // 用于time()

using namespace std;

// 交换两个数的函数
void swap(int& a, int& b) {
    int temp = a;
    a = b;
    b = temp;
}

// Fisher-Yates 随机洗牌算法
void shuffle(int arr[], int n) {
    // 从最后一个元素开始,向前遍历数组
    for (int i = n - 1; i > 0; i--) {
        // 生成一个0到i之间的随机索引
        int j = rand() % (i + 1);

        // 交换arr[i]和arr[j]
        swap(arr[i], arr[j]);
    }
}

// 打印数组
void printArray(int arr[], int n) {
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }
    cout << endl;
}

int main() {
    srand(time(0)); // 初始化随机数种子

    // 初始化一个数组
    int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
    int n = sizeof(arr) / sizeof(arr[0]);

    cout << "原始数组: " << endl;
    printArray(arr, n);

    // 调用洗牌算法
    shuffle(arr, n);

    cout << "洗牌后的数组: " << endl;
    printArray(arr, n);

    return 0;
}

代码解析:

  1. swap函数:用于交换数组中的两个元素位置。洗牌过程中需要频繁交换两个随机位置的元素。

  2. shuffle函数(Fisher-Yates 洗牌算法)

    • 从数组最后一个元素开始,依次向前遍历。
    • 在每次遍历中,生成一个随机索引 j,该索引的范围是从 0 到当前索引 i 之间的任意值。
    • 交换当前索引 i 处的元素与随机索引 j 处的元素。
    • 这样可以确保每个元素在最终数组中都具有相同的概率出现在任意位置。
  3. 随机化:通过 srand(time(0)) 初始化随机数种子,确保每次运行时的洗牌结果不同。

  4. main函数:首先初始化一个数组,然后调用 shuffle 函数对数组进行随机洗牌。最后,打印洗牌后的数组。

工作流程:

  • 算法从数组的最后一个元素开始,逐个向前遍历,随机选择一个索引并交换对应的元素。
  • 这样可以确保每个元素都被均匀地打乱位置,符合随机性。
  • 示例输出:

    原始数组:
    1 2 3 4 5 6 7 8 9 10 
    
    洗牌后的数组:
    7 3 10 1 6 5 9 4 8 2
    

    每次运行该程序都会产生不同的洗牌结果,因为随机化过程使得元素顺序变得不可预测。这种洗牌方法效率高,且能够保证随机性。

4 为旅行商问题(是否存在耗费不超过t的旅行)设计一个拉斯维加斯算法, 要求一次执行的耗时为O(n)。

 

旅行商问题(TSP, Traveling Salesman Problem)是经典的组合优化问题。在这个问题中,给定一组城市和它们之间的距离,目标是找到一条经过每个城市一次且最终回到起点的最短路径。

对于拉斯维加斯算法的设计,它是一种随机化算法,在找到一个可行解之前会不断进行随机尝试。与蒙特卡洛算法不同的是,拉斯维加斯算法在找到一个解时一定是正确的,但它不能保证一定能在固定时间内找到解。下面将为旅行商问题设计一个基于拉斯维加斯策略的近似算法。

问题描述: 给定一组城市以及它们之间的距离矩阵 dist,拉斯维加斯算法尝试找到一个不超过耗费 t 的旅行路径,且该算法的单次执行时间要求为 O(n)。

算法思路:

  1. 随机选择路径:从起点开始,随机选择尚未访问的城市,并计算路径的总距离。
  2. 判断条件:如果随机选出的路径总距离不超过给定的阈值 t,则返回这条路径。
  3. 重复随机尝试:如果路径超过了 t,则重新随机选择一条路径,直到找到满足条件的路径或达到某个退出条件。

算法设计:

  1. 输入

    • dist[][]: 城市之间的距离矩阵,dist[i][j] 表示城市 i 和城市 j 之间的距离。
    • n: 城市数量。
    • t: 路径的最大允许距离。
  2. 输出:一条不超过 t 的旅行路径(如果存在)。

  3. 时间复杂度:每次路径选择的复杂度为 O(n),因为每次选择路径都需要计算当前选择的路径长度,并访问每个城市一次。

#include <iostream>
#include <vector>
#include <cstdlib>  // 用于rand()和srand()
#include <ctime>    // 用于time()
#include <algorithm> // 用于随机打乱顺序
#include <climits>   // 用于表示无穷大

using namespace std;

// 计算给定路径的总距离
int calculatePathCost(const vector<int>& path, const vector<vector<int>>& dist) {
    int totalCost = 0;
    int n = path.size();
    for (int i = 0; i < n - 1; ++i) {
        totalCost += dist[path[i]][path[i + 1]];
    }
    // 返回到起点的距离
    totalCost += dist[path[n - 1]][path[0]];
    return totalCost;
}

// 拉斯维加斯算法解决旅行商问题
vector<int> lasVegasTSP(const vector<vector<int>>& dist, int n, int t) {
    vector<int> cities(n);
    for (int i = 0; i < n; ++i) {
        cities[i] = i;
    }

    // 无限循环,直到找到符合条件的路径
    while (true) {
        // 随机打乱城市顺序
        random_shuffle(cities.begin(), cities.end());

        // 计算随机路径的总花费
        int cost = calculatePathCost(cities, dist);
        
        // 如果总花费不超过t,则返回该路径
        if (cost <= t) {
            return cities;
        }
    }
}

int main() {
    srand(time(0)); // 初始化随机数种子

    // 城市间的距离矩阵
    vector<vector<int>> dist = {
        {0, 10, 15, 20},
        {10, 0, 35, 25},
        {15, 35, 0, 30},
        {20, 25, 30, 0}
    };

    int n = dist.size();  // 城市数量
    int t = 80;           // 最大允许的旅行距离

    // 调用拉斯维加斯算法
    vector<int> result = lasVegasTSP(dist, n, t);

    // 输出结果
    cout << "找到的旅行路径为: ";
    for (int city : result) {
        cout << city << " ";
    }
    cout << endl;

    int cost = calculatePathCost(result, dist);
    cout << "该路径的总花费为: " << cost << endl;

    return 0;
}

代码解析:

  1. calculatePathCost函数

    • 该函数用于计算给定路径的总距离。遍历路径中的城市,依次累加相邻城市之间的距离,并计算最后一个城市返回起点的距离。
  2. lasVegasTSP函数

    • 该函数是拉斯维加斯算法的核心,它随机打乱城市的顺序,并计算总距离。
    • 如果随机生成的路径的总距离不超过给定的阈值 t,则返回该路径。
    • 否则继续随机生成新的路径,直到找到满足条件的路径。
  3. 每次执行路径的打乱和计算的复杂度为 O(n),因为我们需要访问每个城市一次,并计算整个路径的总距离。
  4. 由于是拉斯维加斯算法,不能确定具体执行次数,但每次尝试的时间复杂度为 O(n)。random_shuffle:该函数用于随机打乱城市顺序,它保证每次生成的路径都是不同的。
  5. 随机化

    通过 srand(time(0)) 初始化随机数种子,保证每次执行时的随机性不同

5  请为0/1背包问题(是否存在效益和不少于t的装包方式)设计一个拉斯维加斯算法,要求一次执行的耗时为O(n)。

0/1 背包问题是一个经典的组合优化问题。在这个问题中,我们有一个容量为 W 的背包和若干个物品,每个物品都有一个重量和效益。目标是找到一个选择物品的方式,使得选择的物品总重量不超过 W,且效益和不小于 t

拉斯维加斯算法设计思路:

拉斯维加斯算法是一种随机算法,它在找到一个满足条件的解时是正确的,但不能保证在固定时间内找到解。我们将随机选择物品装入背包,并计算其总重量和效益,直到找到满足效益和不小于 t 的装包方式,且每次尝试的时间复杂度为 O(n)。

算法步骤:

  1. 随机选择物品:每次随机选择若干物品,将它们放入背包,并计算总重量和效益。
  2. 判断条件:如果随机选出的物品总重量不超过背包容量,且总效益不小于 t,则返回这组选择。
  3. 重复随机尝试:如果条件不满足,则重新随机选择物品,直到找到满足条件的选择方式或达到某个退出条件。

算法设计:

  1. 输入

    • weights[]: 每个物品的重量。
    • profits[]: 每个物品的效益。
    • W: 背包的最大容量。
    • t: 目标效益。
  2. 输出:一个物品的选择方式,使得其效益和不少于 t 且总重量不超过 W

  3. 时间复杂度:每次尝试的时间复杂度为 O(n),因为我们只需遍历所有物品,随机决定是否放入背包,并计算总重量和效益。

#include <iostream>
#include <vector>
#include <cstdlib> // 用于rand()和srand()
#include <ctime>   // 用于time()

using namespace std;

// 计算当前选择的总重量和总效益
void calculateWeightAndProfit(const vector<int>& items, const vector<int>& weights, const vector<int>& profits, int& totalWeight, int& totalProfit) {
    totalWeight = 0;
    totalProfit = 0;
    int n = items.size();
    for (int i = 0; i < n; ++i) {
        if (items[i] == 1) {  // 如果物品被选中
            totalWeight += weights[i];
            totalProfit += profits[i];
        }
    }
}

// 拉斯维加斯算法解决0/1背包问题
vector<int> lasVegasKnapsack(const vector<int>& weights, const vector<int>& profits, int W, int t) {
    int n = weights.size();
    vector<int> items(n); // 记录物品是否被选择,1 表示选择,0 表示不选

    while (true) {
        // 随机选择物品
        for (int i = 0; i < n; ++i) {
            items[i] = rand() % 2; // 随机选择0或1
        }

        // 计算当前选择的总重量和效益
        int totalWeight = 0;
        int totalProfit = 0;
        calculateWeightAndProfit(items, weights, profits, totalWeight, totalProfit);

        // 判断是否符合条件
        if (totalWeight <= W && totalProfit >= t) {
            return items;  // 返回当前选择
        }
    }
}

int main() {
    srand(time(0)); // 初始化随机数种子

    // 定义物品的重量和效益
    vector<int> weights = {10, 20, 30, 40, 50};
    vector<int> profits = {60, 100, 120, 140, 200};
    int W = 100;  // 背包容量
    int t = 250;  // 目标效益

    // 调用拉斯维加斯算法
    vector<int> result = lasVegasKnapsack(weights, profits, W, t);

    // 输出结果
    cout << "选中的物品为: ";
    for (int i = 0; i < result.size(); ++i) {
        if (result[i] == 1) {
            cout << i + 1 << " ";
        }
    }
    cout << endl;

    // 计算并输出总重量和效益
    int totalWeight = 0, totalProfit = 0;
    calculateWeightAndProfit(result, weights, profits, totalWeight, totalProfit);
    cout << "总重量: " << totalWeight << ", 总效益: " << totalProfit << endl;

    return 0;
}

 

代码解析:

  1. calculateWeightAndProfit函数

    • 该函数用于计算当前选择的物品总重量和总效益。遍历物品列表,如果某个物品被选中(值为 1),则将其重量和效益累加。
  2. lasVegasKnapsack函数

    • 核心拉斯维加斯算法函数。每次随机选择物品,并计算总重量和效益。如果满足 totalWeight <= WtotalProfit >= t,则返回当前选择的物品。
    • 如果当前选择不满足条件,则重新随机选择,直到找到满足条件的解。
  3. 随机选择物品

    • 我们通过 rand() % 2 生成 0 或 1 来随机选择是否放入背包。这个操作在 O(n) 时间内完成。
  4. 随机化

    • 通过 srand(time(0)) 初始化随机数种子,保证每次执行时的选择是随机的。
  5. main函数

    • 定义了物品的重量和效益,调用拉斯维加斯算法查找符合条件的解,并输出选中的物品及其总重量和效益。

时间复杂度分析:

  • 每次尝试选择物品的时间复杂度为 O(n),因为我们需要遍历所有物品并计算总重量和总效益。
  • 由于是拉斯维加斯算法,无法保证找到解的具体尝试次数,但每次尝试的时间是 O(n)。

6. 请为团问题(是否存在顶点数不少于k的团)设计一个错误概率低于0.25的蒙特卡洛算法,要求一次执行的耗时为O(n 2 )

 

团问题(Clique Problem)是图论中的一个经典问题,定义为在一个无向图中,是否存在一个顶点数不少于 k 的完全子图,即团。问题的难点在于其复杂性,找到一个顶点数不少于 k 的团在一般情况下是 NP 完全问题。因此,我们可以使用蒙特卡洛算法,在多次随机尝试中,概率性地找到解。蒙特卡洛算法允许一定的错误概率,但我们可以通过增加算法的运行次数来降低错误概率。

问题描述:

给定一个无向图 G=(V,E)G = (V, E)G=(V,E),其中 V 是顶点集合,E 是边集合,目标是设计一个错误概率低于 0.25 的蒙特卡洛算法来确定是否存在一个顶点数不少于 k 的团。每次执行的时间复杂度要求为 O(n2)O(n^2)O(n2),其中 n 是顶点的数量。

算法设计思路:

  1. 随机选择顶点子集:从图中随机选择一个顶点子集,并检查该子集是否是一个完全子图(团)。完全子图的定义是,子集中的每一对顶点之间都存在边连接。

  2. 多次随机尝试:通过多次随机选择顶点子集,期望在一定次数内找到一个满足条件的子集。由于蒙特卡洛算法允许一定的错误概率,我们可以通过增加随机选择的次数来减少错误概率。

  3. 控制错误概率:根据错误概率 ϵ\epsilonϵ,通过多次随机选择顶点集合,理论上我们可以控制算法的错误概率小于 ϵ\epsilonϵ。如果尝试次数足够多且仍未找到符合条件的团,则认为不存在这样的团。

蒙特卡洛算法设计:

  1. 输入

    • graph[][]: 图的邻接矩阵,graph[i][j] 表示顶点 i 和顶点 j 是否有边相连。
    • n: 图的顶点数。
    • k: 要寻找的团的顶点数。
  2. 输出:返回 truefalse,表示是否存在顶点数不少于 k 的团。

  3. 时间复杂度:每次随机选择子集并检查其是否为团的时间复杂度为 O(n2)O(n^2)O(n2)。通过设置合理的重复次数,算法的总体复杂度可以满足要求。

#include <iostream>
#include <vector>
#include <cstdlib> // 用于rand()和srand()
#include <ctime>   // 用于time()

using namespace std;

// 检查顶点集合subset是否是一个团(完全子图)
bool isClique(const vector<vector<int>>& graph, const vector<int>& subset) {
    int subsetSize = subset.size();
    // 检查集合中的每一对顶点之间是否都有边相连
    for (int i = 0; i < subsetSize; ++i) {
        for (int j = i + 1; j < subsetSize; ++j) {
            if (graph[subset[i]][subset[j]] == 0) { // 如果没有边相连
                return false;
            }
        }
    }
    return true;
}

// 随机生成一个大小为k的顶点子集
vector<int> getRandomSubset(int n, int k) {
    vector<int> vertices(n);
    for (int i = 0; i < n; ++i) {
        vertices[i] = i;  // 顶点编号从0到n-1
    }

    // 随机选择k个顶点
    vector<int> subset;
    for (int i = 0; i < k; ++i) {
        int randomIndex = rand() % (n - i);  // 随机选择剩余顶点中的一个
        subset.push_back(vertices[randomIndex]);
        swap(vertices[randomIndex], vertices[n - i - 1]);  // 将已选择的顶点移到最后
    }
    return subset;
}

// 蒙特卡洛算法解决团问题
bool monteCarloClique(const vector<vector<int>>& graph, int n, int k, int maxAttempts) {
    for (int i = 0; i < maxAttempts; ++i) {
        // 随机选择k个顶点的子集
        vector<int> subset = getRandomSubset(n, k);
        // 检查该子集是否是一个团
        if (isClique(graph, subset)) {
            return true;  // 找到一个大小为k的团
        }
    }
    return false;  // 没有找到满足条件的团
}

int main() {
    srand(time(0)); // 初始化随机数种子

    // 输入图的邻接矩阵
    vector<vector<int>> graph = {
        {0, 1, 1, 1, 0},
        {1, 0, 1, 0, 0},
        {1, 1, 0, 1, 1},
        {1, 0, 1, 0, 1},
        {0, 0, 1, 1, 0}
    };

    int n = graph.size();  // 图的顶点数量
    int k = 3;  // 寻找顶点数不少于k的团
    int maxAttempts = 100;  // 设置尝试次数

    // 调用蒙特卡洛算法
    bool result = monteCarloClique(graph, n, k, maxAttempts);

    // 输出结果
    if (result) {
        cout << "找到一个顶点数不少于 " << k << " 的团。" << endl;
    } else {
        cout << "没有找到一个顶点数不少于 " << k << " 的团。" << endl;
    }

    return 0;
}

代码解析:

  1. isClique函数

    • 该函数用于检查给定的顶点子集是否构成一个团(完全子图)。
    • 对于每一对顶点,检查它们之间是否存在边(在邻接矩阵中值为 1),如果存在任意一对顶点之间没有边,则该子集不是团。
  2. getRandomSubset函数

    • 随机选择大小为 k 的顶点子集。通过打乱顶点数组,随机选择不重复的顶点。
  3. monteCarloClique函数

    • 蒙特卡洛算法的核心部分。在该函数中进行多次尝试,每次随机选择一个大小为 k 的顶点子集,并检查它是否是一个团。
    • 如果找到一个团,返回 true;否则在最大尝试次数内未找到,返回 false
  4. main函数

    • 初始化图的邻接矩阵,调用蒙特卡洛算法来检查是否存在顶点数不少于 k 的团。输出结果为找到团或未找到。

错误概率分析:

  • 通过设置 maxAttempts 的值,控制算法的错误概率。理论上,随着尝试次数增加,找到团的概率会增加,而未找到团的概率会减小。如果算法在 maxAttempts 次尝试后仍未找到团,则错误概率可以设定为小于 0.25。

时间复杂度分析:

  • 每次随机选择子集的时间复杂度为 O(k)O(k)O(k),因为我们只需选择 k 个顶点。
  • 检查子集是否为团的时间复杂度为 O(k2)O(k^2)O(k2),因为我们需要检查子集内每一对顶点之间是否有边。
  • 整个算法的总时间复杂度为 O(n2)O(n^2)O(n2)(由于随机选择和判断团操作限制在常数次数的尝试内)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值