统计学习基本知识大全-理论篇(1)

 

目录

 一 统计学习的三要素

二 统计学习的方法分类

三 联合概率分布VS条件概率分布

联合概率分布(Joint Probability Distribution)

条件概率分布(Conditional Probability Distribution)

联合概率分布和条件概率分布的关系

应用示例

四 生成模型VS判别模型

生成模型(Generative Model)

判别模型(Discriminative Model)

生成模型与判别模型的区别

五 分类问题VS回归问题VS标注问题

分类问题(Classification Problem)

回归问题(Regression Problem)

标注问题(Labeling Problem)

总结

六 分类问题的评价指标

1. 准确率(Accuracy)

2. 精确率(Precision)

3. 召回率(Recall)

4. F1分数(F1 Score)

5. ROC曲线(Receiver Operating Characteristic Curve)

6. AUC值(Area Under the ROC Curve)

7. 混淆矩阵(Confusion Matrix)

8. 特异性(Specificity)

9. 平衡准确率(Balanced Accuracy)

10. 平均精确率(Average Precision, AP)


一 统计学习的三要素

统计学习方法的三要素是模型、策略和算法。这三个要素构成了统计学习方法的基本框架,具体如下:

  1. 模型(Model)

    模型是对数据进行描述的数学形式或结构。在统计学习中,模型用于近似现实世界的数据生成过程。常见的模型包括线性模型、决策树、支持向量机、神经网络等。
  2. 策略(Strategy)

    策略是指用于评估模型好坏的准则,即损失函数或目标函数。在监督学习中,常见的策略包括最小化均方误差、最小化对数损失函数等。策略决定了模型训练的目标。
  3. 算法(Algorithm)

    算法是指求解模型参数的具体方法或步骤。不同的算法用于不同的模型和策略,如梯度下降法、牛顿法、期望最大化算法等。算法的选择会影响模型训练的效率和效果。

这三要素相互联系,共同构成了统计学习方法的核心。模型定义了学习的对象,策略定义了学习的目标,而算法则是实现学习的具体手段。

二 统计学习的方法分类

  1. 监督学习(Supervised Learning)

    在监督学习中,训练数据包含输入和对应的输出标签,模型通过学习这些已知的输入-输出对来进行预测。常见的监督学习算法有线性回归、逻辑回归、支持向量机、决策树、神经网络等。
  2. 无监督学习(Unsupervised Learning)

    无监督学习没有标签信息,模型需要从输入数据中发现内在结构和规律。常见的无监督学习算法有聚类算法(如K-means、层次聚类)、降维算法(如PCA、t-SNE)等。
  3. 半监督学习(Semi-Supervised Learning)

    半监督学习结合了少量有标签数据和大量无标签数据,用以提高模型的学习效果。
  4. 强化学习(Reinforcement Learning)

    强化学习通过与环境的交互,学习如何采取行动以最大化累积奖励。常见的强化学习算法有Q-learning、策略梯度方法等。

三 联合概率分布VS条件概率分布

联合概率分布和条件概率分布是概率论和统计学习中的两个重要概念,它们描述了随机变量之间的关系和依赖性。

联合概率分布(Joint Probability Distribution)

联合概率分布描述了两个或多个随机变量同时发生的概率。例如,假设有两个随机变量 X和 Y,联合概率分布 P(X,Y)表示 X和 Y 同时取某些特定值的概率。在离散情况下,这可以表示为:

P(X=xi,Y=yj)

对于连续随机变量,联合概率分布表示为联合概率密度函数:

fX,Y(x,y)

条件概率分布(Conditional Probability Distribution)

条件概率分布描述了在已知一个随机变量的取值条件下,另一个随机变量的概率分布。例如,条件概率分布 P(Y∣X)表示在给定 X 的取值 x的条件下, Y的概率分布。

条件概率可以通过联合概率分布和边缘概率分布来计算。对于离散随机变量:

对于连续随机变量,条件概率密度函数可以表示为:

联合概率分布和条件概率分布的关系

联合概率分布和条件概率分布之间有密切的关系。通过联合概率分布和边缘概率分布可以得到条件概率分布,反之亦然。

  1. 从联合概率分布到条件概率分布

    条件概率分布可以通过联合概率分布和边缘概率分布来计算,如上所示。
  2. 从条件概率分布和边缘概率分布到联合概率分布

    联合概率分布可以通过条件概率分布和边缘概率分布来计算:
    • 对于离散随机变量:

应用示例

假设我们有一个学生的性别 X 和考试成绩 Y,我们可以定义联合概率分布和条件概率分布。

  1. 联合概率分布:描述不同性别学生获得不同成绩的联合概率。例如,P(X=男,Y=90) 表示男学生获得90分的概率。

  2. 条件概率分布:描述在已知性别的条件下,学生获得不同成绩的概率。例如,P(Y=90∣X=男 表示在已知是男学生的条件下,该学生获得90分的概率。

通过理解联合概率分布和条件概率分布,我们可以更好地建模和分析随机变量之间的关系和依赖性。

四 生成模型VS判别模型

生成模型和判别模型是机器学习中两种不同类型的模型,它们在数据处理和学习方法上有不同的侧重点。

生成模型(Generative Model)

生成模型试图建模数据的生成过程,即它们试图学习数据的联合概率分布 P(X,Y)。通过这个联合概率分布,可以生成新的数据样本。这类模型不仅可以用于分类,还可以用于数据生成、密度估计等任务。

常见的生成模型包括:

  1. 朴素贝叶斯(Naive Bayes):假设特征之间相互独立,计算条件概率 P(Y∣X)。
  2. 隐马尔可夫模型(Hidden Markov Model, HMM):用于序列数据的生成。
  3. 生成对抗网络(Generative Adversarial Network, GAN):通过两个网络(生成器和判别器)的对抗训练来生成逼真的数据样本。
  4. 变分自编码器(Variational Autoencoder, VAE):通过变分推断和重构误差来学习数据分布。

判别模型(Discriminative Model)

判别模型直接学习数据的条件概率分布 P(Y∣X),即直接从输入数据 X 到输出标签 Y 的映射。这类模型主要用于分类和回归任务,其目标是找到一个最优的决策边界来区分不同的类别。

常见的判别模型包括:

  1. 逻辑回归(Logistic Regression):用于二分类问题,学习 P(Y∣X)。
  2. 支持向量机(Support Vector Machine, SVM):通过最大化分类边界来实现分类。
  3. 决策树(Decision Tree)和随机森林(Random Forest):通过树形结构对数据进行分类。
  4. 神经网络(Neural Networks):通过多层感知器和复杂网络结构实现非线性映射。

生成模型与判别模型的区别

  1. 学习目标

    • 生成模型学习联合概率分布 P(X,Y),即数据的生成过程。
    • 判别模型学习条件概率分布 P(Y∣X),即直接进行分类或回归。
  2. 应用场景

    • 生成模型可以用于数据生成、密度估计、数据缺失值填补等任务。
    • 判别模型主要用于分类、回归等预测任务。
  3. 复杂性和计算需求

    • 生成模型通常需要对数据进行更全面的建模,计算复杂度较高。
    • 判别模型相对简单,计算复杂度较低,适合大规模数据处理。
  4. 泛化能力

    • 生成模型因为建模更全面,可能在数据不足或分布变化的情况下表现更好。
    • 判别模型在数据充足且分布稳定的情况下,往往表现更优。

总结而言,生成模型和判别模型在学习数据的方式和应用场景上有所不同,根据具体的任务需求选择合适的模型可以更好地解决问题。

五 分类问题VS回归问题VS标注问题

分类问题、回归问题和标注问题是机器学习中的三种基本任务类型,它们针对不同的数据和目标进行建模和预测。

分类问题(Classification Problem)

定义:分类问题是指预测离散的类别标签。目标是将输入数据分配到预定义的类别中。

特征

  • 输出是离散的类别(如二分类、多分类)。
  • 典型应用:垃圾邮件检测、图像分类、情感分析。

常见算法

  • 逻辑回归(Logistic Regression)
  • 支持向量机(Support Vector Machine, SVM)
  • 决策树(Decision Tree)和随机森林(Random Forest)
  • k近邻算法(k-Nearest Neighbors, k-NN)
  • 神经网络(Neural Networks)
  • 朴素贝叶斯(Naive Bayes)

评价指标

  • 准确率(Accuracy)
  • 精确率(Precision)
  • 召回率(Recall)
  • F1分数(F1 Score)
  • ROC曲线和AUC值

回归问题(Regression Problem)

定义:回归问题是指预测连续的数值。目标是建立输入特征与连续输出之间的关系。

特征

  • 输出是连续的数值(如房价预测、股票价格预测)。
  • 典型应用:房价预测、销售预测、温度预测。

常见算法

  • 线性回归(Linear Regression)
  • 岭回归(Ridge Regression)和拉索回归(Lasso Regression)
  • 支持向量回归(Support Vector Regression, SVR)
  • 决策树回归(Decision Tree Regression)和随机森林回归(Random Forest Regression)
  • k近邻回归(k-Nearest Neighbors Regression)
  • 神经网络回归(Neural Networks Regression)

评价指标

  • 均方误差(Mean Squared Error, MSE)
  • 均绝对误差(Mean Absolute Error, MAE)
  • 决定系数(R-squared, R2R^2R2)
  • 均方根误差(Root Mean Squared Error, RMSE)

标注问题(Labeling Problem)

定义:标注问题是指对序列数据的每个元素进行分类或预测。目标是为输入序列中的每个位置分配一个标签。

特征

  • 处理序列数据(如文本、语音、时间序列)。
  • 每个元素(如单词、帧、时间点)都有一个对应的标签。
  • 典型应用:命名实体识别(NER)、词性标注(POS tagging)、语音识别、图像分割。

常见算法

  • 隐马尔可夫模型(Hidden Markov Model, HMM)
  • 条件随机场(Conditional Random Field, CRF)
  • 循环神经网络(Recurrent Neural Networks, RNN)及其变种(如长短期记忆网络 LSTM、门控循环单元 GRU)
  • 转换器模型(Transformers)

评价指标

  • 准确率(Accuracy)
  • 精确率(Precision)、召回率(Recall)和F1分数(F1 Score)针对每个标签计算
  • 序列整体正确率(Sequence Accuracy)
  • 平均标注长度(Average Label Length)

总结

  • 分类问题:预测离散类别。评价指标包括准确率、精确率、召回率、F1分数等。
  • 回归问题:预测连续数值。评价指标包括均方误差、均绝对误差、决定系数等。
  • 标注问题:为序列数据中的每个元素分配标签。评价指标包括准确率、精确率、召回率、F1分数等。

根据具体任务和数据类型,选择合适的问题类型和算法进行建模和预测。

六 分类问题的评价指标

在分类问题中,评价指标用于衡量分类模型的性能,以便比较不同模型和调优模型参数。常见的评价指标包括准确率、精确率、召回率、F1分数、ROC曲线和AUC值等。以下是这些指标的详细介绍:

1. 准确率(Accuracy)

准确率是正确分类样本数占总样本数的比例。对于一个二分类问题,其定义为:

2. 精确率(Precision)

精确率(有时也称为查准率)是预测为正类的样本中,实际为正类的比例。其定义为:

3. 召回率(Recall)

召回率(有时也称为查全率或灵敏度)是实际为正类的样本中,正确预测为正类的比例。其定义为:

4. F1分数(F1 Score)

F1分数是精确率和召回率的调和平均数,用于平衡这两者。其定义为:

5. ROC曲线(Receiver Operating Characteristic Curve)

ROC曲线是通过改变分类阈值,绘制出的真阳性率(召回率)和假阳性率(FPR = FP / (FP + TN))之间的关系曲线。ROC曲线下的面积(AUC)是衡量分类器性能的指标。

6. AUC值(Area Under the ROC Curve)

AUC值表示ROC曲线下的面积,其值介于0和1之间。AUC值越大,模型的分类性能越好。AUC值具有以下解释:

  • AUC = 0.5:模型无分类能力,等同于随机猜测。
  • 0.5 < AUC < 1:模型有一定的分类能力,越接近1表示分类性能越好。
  • AUC = 1:模型有完美的分类能力。

7. 混淆矩阵(Confusion Matrix)

混淆矩阵是一个表格,用于总结分类模型在测试集上的表现。它展示了预测标签和实际标签的对比。对于二分类问题,混淆矩阵如下:

实际正类 (Positive)实际负类 (Negative)
预测正类 (Positive)True Positive (TP)False Positive (FP)
预测负类 (Negative)False Negative (FN)True Negative (TN)

混淆矩阵可以帮助识别模型在哪些类别上表现不佳,从而有针对性地改进模型。

8. 特异性(Specificity)

特异性(有时称为真负率)是实际为负类的样本中,正确预测为负类的比例。其定义为:

9. 平衡准确率(Balanced Accuracy)

平衡准确率是对不平衡数据集进行评价的一个指标,计算为精确率和特异性的平均值:

10. 平均精确率(Average Precision, AP)

平均精确率是精确率-召回率曲线下的面积,用于评估分类模型在不同阈值下的表现。特别适用于不平衡数据集。

选择适当的评价指标对于模型性能的全面评估和改进非常重要,不同指标可以提供模型不同方面的性能信息。

  • 10
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值