- 博客(67)
- 收藏
- 关注
原创 mac系统安装neo4j图数据库
进入 neo4j-community-5.25.1文件夹中的bin文件夹中,为neo4j 和 neo4j-admin 赋予权限。第一步:解压 neo4j-community-5.25.1-unix.tar.gz。解压成功后,就会出现 neo4j-community-5.25.1 文件夹。下载好 jdk-17-macos-x64-bin.dmg。社区版只能创建一个数据库,默认数据库名称为 neo4j。使用cypher 语句创建一个节点。crtl + O 写入。crtl + X 退出。
2025-11-21 22:58:20
392
原创 DeepSeek-OCR
一、研究目的与核心思想 DeepSeek-OCR 是一次关于 “通过光学二维映射(optical 2D mapping)压缩长上下文” 的初步探索。它的目标是让模型能高效地从高分辨率输入中提取关键信息,把大量文本压缩成更少的视觉 token,从而实现高效的 OCR(光学字符识别)与长文本理解。二、模型结构模型包含两个主要组件: DeepEncoder:核心引擎,负责在高分辨率输入下保持低激活量(即计算量低),同时实现高压缩率,把大规模文字信息压缩为少量视觉 token。
2025-10-31 13:23:33
1275
原创 A New One-Shot Federated Learning Framework forMedical Imaging Classification with Feature-GuidedR
这段摘要主要介绍了一种改进的**单轮联邦学习(One-Shot Federated Learning, OSFL)**框架,用于医疗多中心场景中的隐私保护与高效训练。传统 OSFL 虽通信成本低,但在医疗影像领域存在两个主要问题:(1)基于生成模型的方法训练效率低且易造成隐私泄露;(2)在非独立同分布(non-IID)数据下难以在一轮聚合内收敛。为此,作者提出了新的与。:在客户端生成(非像素级),以加快生成建模速度并减少隐私风险。:在模型聚合时,让全局学生模型同时模仿客户端教师模型的。
2025-10-27 20:15:13
1023
原创 Synthesizing and Adapting Error Correction Data for Mobile LargeLanguage Model Applications
提高LLM在移动端文字输入时的纠错性能。:作者利用LLM生成高质量的“错误-纠正”样本对,用于模型评估和改进。通过引入“纠错领域知识”的提示词(prompting),让LLM生成更可靠、可扩展的合成数据。为了让这些合成数据更符合移动应用的真实分布,研究者设计了一个“重加权模型(reweighting model)”,根据LLM在离线评测中的表现和隐私安全的设备端小模型分数,预测线上A/B测试指标,从而学习合适的样本权重。
2025-10-26 15:50:07
533
原创 Federated Learning for Diffusion Models
该部分指出现有研究虽在生成式联邦学习上取得进展,但仍存在三大不足:多数方法未能充分利用扩散模型的生成潜力;生成数据质量在非IID场景下下降显著;缺乏理论收敛分析。因此,本文提出。
2025-10-26 15:20:56
667
原创 One-Shot Federated Learning with Classifier-FreeDiffusion Models
虽然FMs在减少数据异质性、降低通信开销方面具有巨大潜力,但目前它们在联邦学习中的应用仍然。
2025-10-26 12:41:15
1019
原创 One-Shot Heterogeneous Federated Learning withLocal Model-Guided Diffusion Models
提出一种无需客户端部署基础模型的 OSFL 方法,大幅提高其实用性;利用客户端模型指导扩散模型生成高质量合成数据,通过分类损失和BN损失捕捉类别与上下文特征;理论上证明:在客户端模型的辅助下,服务器端扩散模型的分布与真实客户端分布之间的。
2025-10-26 11:03:07
941
原创 FEDBIP: HETEROGENEOUS ONE-SHOT FEDERATEDLEARNING WITH PERSONALIZED LATENT DIFFUSIONMODELS
🌐 研究背景是一种新的去中心化机器学习范式,只需要客户端上传一次数据或模型。这种方式大大减少了通信开销,并在一定程度上降低了隐私泄露的风险。然而,由于客户端之间的数据分布不同(数据异质性)以及每个客户端数据量有限,OSFL 在现实场景中效果往往不佳。🎨 问题与动机最近在图像生成方面表现突出,通过大规模预训练能生成高质量图像,因此有潜力用来缓解 OSFL 中的数据不足问题。但问题在于:直接将预训练的 LDM 用于 OSFL 会导致。
2025-10-26 10:25:15
686
原创 MLLM-LLaVA-FL: Multimodal Large Language Model Assisted FederatedLearning
如何在不泄露隐私的前提下缓解数据异质性?如何避免让资源受限的客户端承担过高计算负荷?
2025-10-25 23:27:35
769
原创 Federated Learning-Empowered AI-Generated Content in Wireless Networks
AIGC 能提升内容创作的效率、多样性和个性化,但目前的 AIGC 系统通常依赖集中式训练(包括预训练、微调和推理),在无线网络环境下存在隐私和效率方面的限制。
2025-10-25 22:30:53
631
原创 When NOMA Meets AIGC: Enhanced WirelessFederated Learning
各阶段时间、数据量、模型大小、迭代次数等。
2025-10-25 21:50:43
735
原创 FedTabDiff: Federated Learning of Diffusion Probabilistic Modelsfor Synthetic Mixed-Type Tabular Da
FedTabDiff 基于。
2025-10-25 20:28:37
992
原创 联邦学习论文分享:IMFL-AIGC: Incentive Mechanism Design forFederated Learning Empowered by ArtificialIntell
一种让多个客户端(如手机、边缘设备等)在的情况下的机器学习框架。各客户端的数据质量差异较大,可能导致全局模型性能下降。利用生成额外的合成数据(synthetic data),用来弥补数据不足或质量差的问题,从而提高 FL 模型性能。尽管 AIGC 可以增强联邦学习的性能,但也带来了本地模型计算成本;合成数据生成成本(AIGC 本身需要计算资源);数据评估和通信开销。因此,客户端若没有足够的,往往。这就引出了本文的核心问题:对 AIGC 生成的合成样本进行质量打分;
2025-10-14 17:57:39
781
原创 联邦学习论文分享:Securing Federated Diffusion Model With DynamicQuantization for Generative AI Services in
是近年来在图像、音频、视频和3D内容生成方面表现极为出色的生成模型(如Stable Diffusion等)。它们属于**人工智能生成内容(AIGC)物联网(IoT)智能物联网(AIoT)**发展的关键一步。在AIoT环境中,设备数量庞大、分布分散,因此需要通过GDMs。:如后门攻击(backdoor attacks)、木马攻击(trojan attacks)等触发式攻击可能破坏模型安全。:AIoT设备计算与通信资源有限,模型训练通信开销大,能量消耗高。作者提出了一个,命名为:抵御触发型攻击;
2025-10-14 09:59:58
659
原创 论文分享:AIGC-assisted Federated Learning for VehicularEdge Intelligence: Vehicle Selection, ResourceA
研究背景 在智能车联网中,各车辆会产生大量本地数据,但直接上传到云端会带来隐私与安全问题。联邦学习(FL) 允许各车辆在本地训练模型,仅共享模型参数,从而保护数据隐私。然而,车辆移动性强、无线信道不稳定、不同车辆的数据分布差异(即数据异质性)会影响FL的性能。研究创新 为解决车辆间数据分布不一致的问题,作者引入 AIGC(AI生成内容),即利用AI生成合成数据,以增强模型的训练效果。提出了一个新框架 GenFV,将AIGC与FL结合,用于提升车载智能系统的学习能力与鲁棒性。
2025-10-13 22:27:31
1006
原创 transformer代码
先给出可以运行的transformer代码,debug一遍,可以更好的了解transformer的架构,至于transformer的详解,还有后续。
2025-10-12 16:07:34
459
原创 联邦学习论文分享:Data-centric Federated Graph Learning with Large Language Models
一个。
2025-10-12 16:07:15
1036
原创 联邦学习论文分享:AIGC-assisted Federated Learning for EdgeIntelligence: Architecture Design, ResearchChall
一、研究背景联邦学习(FL) 是一种分布式机器学习框架,允许多个终端设备在不共享原始数据的前提下协同训练模型,从而在保证隐私和安全的同时充分利用分布式数据资源。然而,FL 的一个核心难题是 数据异质性(data heterogeneity / Non-IID 分布)。不同客户端的数据分布差异大,导致全局模型难以收敛或性能下降。二、论文提出的解决思路作者提出使用 AIGC(Artificial Intelligence Generated Content) 技术来缓解数据异质性问题。AIGC 是一种人工智能生
2025-10-12 15:17:26
1031
原创 联邦学习论文分享:FedDEO: Description-Enhanced One-Shot Federated Learningwith Diffusion Models
1. 方法结构概述作者首先说明了FedDEO 方法的总体组成:客户端描述训练(Client Description Training)服务器图像生成(Server Image Generation)之后还包含一个理论分析部分,用于解释生成数据分布与客户端真实数据分布之间的关系。论文在 Figure 1 展示了 FedDEO 的总体框架,并在补充材料中提供了伪代码(pseudocode)。
2025-10-10 16:05:29
983
原创 联邦学习论文分享:Federated learning and conditional diffusion model for privacy-preservingshort-term voltag
机制 M 满足 (ε,δ)(ε,δ)(ε,δ)-DP,如果对于仅相差一条记录的数据集 D 和 D’,其输出概率满足公式 (6)。
2025-10-01 10:50:40
1418
原创 联邦学习论文分享:Overcoming data-sharing challenges in centralbanking: federated learning of diffusion mode
现实中生成高质量的合成表格数据非常困难,尤其是涉及金融、医疗等敏感领域时,必须兼顾数据隐私。表格数据本身具有复杂性:既包含不同类型的属性(数值型、类别型等),又存在隐含的关系结构。作者提出,一种新的,用于在不集中原始数据的情况下生成高保真合成表格数据。基于,并将其扩展到联邦学习场景。,多个实体可协作训练生成模型,同时保持数据本地化和隐私。,确保模型在多方之间有效融合。在真实的金融和医疗数据集上进行了实验。结果显示 FedTabDiff 能生成在上都表现良好的合成数据。
2025-09-30 22:14:19
1197
原创 联邦学习论文分享:Exploring One-Shot Semi-supervised Federated Learningwith Pre-trained Diffusion Models
*引入扩散模型(Diffusion Models, DM)**到半监督联邦学习。
2025-09-29 23:29:51
1370
原创 联邦学习论文分享:VQ-FedDiff: Federated Learning Algorithm ofDiffusion Models with Client-SpecificVector-Qu
提出。
2025-09-24 21:34:23
856
原创 【无标题】联邦学习论文分享:Stable Diffusion-based Data Augmentation for FederatedLearning with Non-IID Data
这段话的作用是:给出扩散模型的。
2025-09-23 16:46:24
1450
原创 联邦学习论文分享:Federated Learning with GAN-based Data Synthesis for Non-IID Clients
每个客户端预训练本地的。
2025-09-22 21:26:48
1308
1
原创 联邦学习论文分享:Diffusion Model-Based Data Synthesis AidedFederated Semi-Supervised Learning
人工标注的标签,比如在图像分类中:一张猫的照片 → 标签是 “cat”一张狗的照片 → 标签是 “dog”
2025-09-21 10:20:44
1366
原创 多模态知识图谱
回顾知识图谱(KG)的定义传统KG是一个有向图,由实体、关系、属性及其对应的三元组组成。三元组分为关系三元组 (s, p, o) 和属性三元组 (s, p, o)。引入多模态知识图谱(MMKG)MMKG是在传统KG的基础上,把部分符号知识与非文本模态(如图像、声音、视频)关联起来。举例:一个关系三元组 (s, p, o) 可以配上一张描述关系的图像。两种主要的MMKG表示方式A-MMKG。
2025-09-20 21:56:06
1469
原创 联邦学习论文分享:An Upload-Efficient Scheme for Transferring Knowledge From a Server-SidePre-trained Genera
HtFL 的目标:保持。
2025-09-20 20:54:45
1401
原创 联邦学习论文分享:FedGIMP
FedGIMP 的优势现有基于条件模型的方法(如潜在空间对齐、分裂网络)容易受到成像算子变化(加速率、采样密度差异)的影响。FedGIMP将成像算子和图像先验解耦,因此在多站点数据存在异质性时表现更稳健。实验表明 FedGIMP 在不同加速率、采样密度和跨站点情况下都优于现有的联邦条件模型。这样提升了多站点协作的灵活性,即使协议和设备不一致也能合作。计算成本对比条件模型训练时需要针对不同加速率/采样密度反复训练,而 FedGIMP只需训练一次通用的 MRI 先验,训练更简单。
2025-09-17 21:22:11
991
原创 联邦学习论文分享:Federated learning for generating synthetic data: a scoping review
Discussion 部分研究现状共纳入 69 篇论文,其中 21 篇涉及联邦合成 (federated synthesis)。FL 自 2016 年提出后快速发展,2022 年相关文献显著增加。图像数据是主要研究对象,表格数据研究仍然稀缺。方法特点深度学习方法(尤其是 GAN)最常见,原因包括:GAN 与 FL 在近几年同时流行;神经网络权重/参数易于共享与聚合,适合 FL;GAN 架构灵活,可探索不同配置。表格数据合成难度大,NN 需要适配,导致研究不足。隐私与风险问题很多研究。
2025-09-17 14:05:56
1011
原创 联邦学习论文分享:DPD-fVAE
研究背景传统 FL 大多用于训练分类模型,但由于数据敏感性,这些模型及其训练过程仍然存在隐私风险。近年来有研究提出:与其直接训练分类器,不如训练一个数据生成模型,可以合成一个“新的、不受隐私限制”的数据集,方便后续研究和模型评估。提出的方法:DPD-fVAE一种带差分隐私保护的联邦变分自编码器(fVAE)。关键创新点:只在联邦学习中同步 解码器(Decoder),这样能减少每一轮训练的隐私开销,从而提升生成数据的质量。隐私保护在训练过程中引入差分隐私机制,作为额外的保护层,进一步降低真实数据泄露风险。实验与
2025-09-15 21:50:00
1334
原创 联邦学习论文分享:DIFFERENTIALLY PRIVATE SYNTHETIC DATAVIA FOUNDATION MODEL APIS 1: IMAGES
1. 核心问题定义:DP Wasserstein Approximation (DPWA)一个私有数据集,包含 Npriv 个样本(例如图片)。一个距离函数d(⋅,⋅)用于衡量样本之间的差异。一个 p≥1指定 Wasserstein 距离的阶数。设计一个满足 (ϵ,δ)-差分隐私(DP)的算法 M,输出一个合成数据集Ssyn={xi′},使得它与私有数据集的 Wasserstein 距离 Wp(Spriv,Ssyn) 尽可能小。衡量两个数据集的分布差异。
2025-09-15 15:31:25
1235
原创 简单了解一下GraphRAG
当我们将一段文本信息以句子分割后,存入到向量数据库中。用户提问“老王喜欢吃什么”,这个问题会与向量数据库中的许多句子关联性比较强,能返回准确且具体的信息。但是,若是问题换成“出现了几次西瓜”,西瓜是一个比较具体的名词/物品,它容易出现在很多句子中,但是在出现的句子中占比又不是很大。
2025-09-14 00:01:34
1316
原创 联邦学习论文分享:Privacy-Enhancing Paradigms within Federated Multi-Agent Systems
研究背景:大语言模型(LLM)驱动的多智能体系统(MAS)在复杂问题求解中非常有效,但在敏感领域应用时面临隐私保护的挑战。提出的新概念:作者提出了 联邦多智能体系统(Federated MAS) 的概念,并指出它与传统联邦学习(FL)的根本区别。核心挑战:在开发 Federated MAS 时,需要解决的几个关键问题:不同智能体之间的隐私协议不一致;多方对话的结构差异;动态变化的对话网络结构。解决方案:提出了 嵌入式隐私增强智能体(EPEAgents),它能无缝集成到 RAG(检索增强生成)阶段和上下文检索
2025-09-10 12:16:28
1376
原创 联邦学习论文分享:PPC-GPT: Federated Task-Specific Compression of Large LanguageModels via Pruning and Chain
框架介绍PPC-GPT 是一个隐私保护的联邦学习框架,用于将大型语言模型(LLM)压缩成任务特定的小型模型(SLM)。压缩过程结合了剪枝(pruning)和链式推理蒸馏(COT distillation)。DP扰动数据(DP Perturbed Data):对客户端数据进行差分隐私保护。合成数据生成(Synthetic Data Generation):生成可用于训练的小规模数据。逐层结构化剪枝(Layer-Wise Structured Pruning):压缩模型参数。再训练(Retraining)
2025-09-08 18:15:08
1383
原创 联邦学习论文分享:FedPepTAO
1. 研究目标研究如何在联邦学习(FL)环境下高效地进行 prompt tuning,以调优大语言模型(LLM)。核心限制:模型本身参数 MMM 冻结不更新,只更新提示参数(prompts, P)。2. 基本设定模型:一个有 LLL 层的 LLM,记为 M。Prompt 参数:每层的 prompt 参数记为 Pi,整体记为 P。联邦学习环境有一个参数服务器和 M 个设备。每个设备 i 持有自己的数据集,其中 si 是输入样本,mi 是标签,ni 是样本数。
2025-09-07 13:08:02
1415
原创 联邦学习论文分享:Towards Building the Federated GPT:Federated Instruction Tuning
指令微调是一种让大语言模型(LLM)学会。
2025-09-06 19:46:01
1588
4
原创 联邦学习论文分享:Federated In-Context LLM Agent Learning
摘录本地数据中掌握工具所需的关键信息。所有客户端的知识摘要汇总形成。
2025-09-04 14:41:41
1370
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅