力扣:494. 目标和
题目:
给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。
解析:
0~n个物品放入容量为 j 的背包中其价值等于 j 的种类数 =
物品数为一个塞满背包的方法数
+物品数为两个塞满背包的方法数(且必须选定第二个物品才能是与之前不同的方法)
+物品数为三个塞满背包的方法数(且必须选定第三个物品才能是与之前不同的方法)
+物品数为n个塞满背包的方法数(其中必须选定第n个物品才能是与之前不同的方法)
此时可以看出dp[ j ]可以由前面的值表现出来,所以可以使用动态规划。
dp【j】的含义:
dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法
dp数组的初始化:
dp[0] = 1,理论上也很好解释,装满容量为0的背包,有1种方法,就是装0件物品。
dp[j]其他下标对应的数值应该初始化为0,因为的物品数为0,那么装满容量为 j 的背包的方法数自然为0
确定递推公式:
由上述可知:dp[j] += dp[j - nums[i]]
确定遍历顺序:
第一个for遍历物品顺序遍历,第二个for遍历背包容量逆序遍历,其中背包容量需大于物品重量才执行循环体。
代码如下:
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (abs(S) > sum) return 0; // 此时没有方案
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
int bagSize = (S + sum) / 2;
if (bagSize < 0) return 0;
vector<int> dp(bagSize + 1, 0);
dp[0] = 1;
for (int i = 0; i < nums.size(); i++) {
for (int j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
}
};