题目:
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
解析:
一样的,首先dp数组的含义直接为题目的目的即0 ~ i 转换成0 ~ j 所需要的最小操作数。
当前值相等:
- 只需要将0~ i-1 转换成0~j-1即可。即
dp[i][j] = dp[i-1][j-1];
当前值不相等(要到达目的有三种方式):
- 插入元素才能转换成目标字符串:即:
dp[i][j] = dp[i][j - 1] + 1;
因为转换成标准字符串肯定是插入word2【j】这个字母,换个角度来想只需要 0~ i 实现0~ j-1 然后+1(即插入这个值的操作)即可。 - 删除元素才能转换成目标字符串:即
dp[i][j] = dp[i - 1][j] + 1;
- 修改元素才能转换成目标字符串:
dp[i][j] = dp[i - 1][j - 1] + 1;
将word1当前值修改为word2当前值。
初始化:
按照含义,递归公式,模拟遍历来初始化。此时按照含义即可初始化完成。
for(int i = 0; i <= word1.size(); ++i) dp[i][0] = i;
for(int i = 0; i <= word2.size(); ++i) dp[0][i] = i;
代码:
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1,0));
for(int i = 0; i <= word1.size(); ++i) dp[i][0] = i;
for(int i = 0; i <= word2.size(); ++i) dp[0][i] = i;
for(int i = 1; i <= word1.size(); ++i) {
for(int j = 1; j <= word2.size(); ++j) {
if(word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1];
else dp[i][j] = min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+1));
}
}
return dp[word1.size()][word2.size()];
}
};