基于一个简单的矩阵理论题展开一下对于坐标,内积,向量之间关系的一些理解

本文探讨了欧氏空间的概念,特别是实数域上的欧几里得空间与希尔伯得空间的区别。重点介绍了标准正交基的作用,即它是如何通过内积定义向量的坐标投影。理解这一概念有助于深入掌握线性代数的基础原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 这道题很有意思,很简单但是其中的思想可以学一下,还是老样子结束一下题目中出现的一些名词。

欧式空间:欧氏空间也称为欧几里得空间,就是一个有内积的线性空间

能进行内积运算的空间叫做内积空间,内积空间又根据是否在实数域分为:欧几里得空间(实数域上面的有限维空间)和希尔伯得空间(推广到非实数域,无限维空间,具有完备性)

标准正交基:说白了就是一组互相垂直的向量,然后可以做坐标系。

为什么说任意向量α在这个基下的坐标是和相应标准正交基的内积呢?其实内积就是一种投影(算出来是标量),那么向量α的坐标不就是这个向量在这些轴上面的投影吗?(可以通过三维坐标系思考一下)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值