SVD,奇异值分解的计算步骤以及实例讲解

奇异值分解(SVD)是矩阵计算的重要工具,适用于非方阵矩阵的分解。SVD将任何矩阵A分解为UΣV^T的形式,其中U和V是酉矩阵,Σ是包含奇异值的对角矩阵。SVD广泛应用于最小二乘问题、最优化、统计分析、信号处理和图像处理等领域。分解过程包括求解A和A^T的特征向量和特征值,然后构造U和V矩阵。掌握SVD的基本原理和计算步骤对于理解和应用这一技术至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       奇异值分解(singular value decomposition,SVD),已经成为矩阵计算中最有用和最有效的工具之一,并且在最小二乘问题、最优化、统计分析、信号与图像处理、系统理论与控制等领域得到广泛应用。

        首先我们都知道方阵是可以特征值分解的,那么问题来了,如果矩阵不是一个方阵那么它还可以分解吗?是可以的,就是我们正在介绍的奇异值分解。

那么,开冲!

下面介绍方法,记住任何一个矩阵A都可以分解成以下形式(别问为什么,我看了证明的,头大,太难了)

   

 注:U和V都是酉矩阵,即满足

求法如下

U是的特征向量张成的一个矩阵

V是的特征向量张成的一个矩阵

或者的特征值的平方根

下面进行一个证明

注:的特征值是一样的

好了,SVD分解就是这么简单,一般就两步

第一步:求的特征向量(构成的矩阵就是V)和特征值(默认由大到小排列,然后要求根号)

第二步:求的特征向量(构成的矩阵就是U)

下面进行一个实例讲解:

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值