大学实行学分制。每门课程都有一定的学分,学生只要选修了这门课并通过考核就能获得相应学分。学生最后的学分是他选修各门课的学分总和。
每个学生都要选择规定数量的课程。有些课程可以直接选修,有些课程需要一定的基础知识,必须在选了其他的一些课程基础上才能选修。例如《数据结构》必须在选修了《高级语言程序设计》后才能选修。我们称《高级语言程序设计》是《数据结构》的先修课。每门课的直接先修课最多只有一门。两门课也可能存在相同的先修课。为便于表述,每门课都有一个课号,课号依次为 1,2,3,⋯。
下面举例说明:
课号 | 先修课号 | 学分 |
---|---|---|
1 | 无 | 1 |
2 | 1 | 1 |
3 | 2 | 3 |
4 | 无 | 3 |
5 | 2 | 4 |
上例中课号 1 是课号 2 的先修课,即如果要先修课号 2,则课号 1 必定已被选过。同样,如果要选修课号 3 ,那么课号 1 和 课号 2 都一定被选修过。
学生不可能学完大学开设的所有课程,因此必须在入学时选定自己要学的课程。每个学生可选课程的总数是给定的。请找出一种选课方案使得你能得到的学分最多,并满足先修课优先的原则。假定课程间不存在时间上的冲突。
首先看一下这道题的条件,有先修课程,所以可以建成一棵树
想要取儿子,就必须取父亲
然后来看状态如何定义
dp[i][j]表示以i为根的子树中选出j个所能得到的最大值
这其中需要一个压维
将在每个子树中选择第几个那一维删去
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n,m,h[N],to[N],ne[N];
int v[N],tot=0,dp[1111][1111];
void add(int x,int y) {
tot++;
to[tot]=y;
ne[tot]=h[x];
h[x]=tot;
}
void dfs(int x) {
dp[x][0]=0;
for(int k=h[x]; k!=-1; k=ne[k]) {
dfs(to[k]);
for(int i=m; i>=0; i--) {
for(int j=i; j>=0; j--) {
dp[x][i]=max(dp[x][i],dp[x][i-j]+dp[to[k]][j]);
}
}
}
if(x)
for(int i=m; i>=1; i--)
dp[x][i]=dp[x][i-1]+v[x];
return ;
}
int main() {
memset(h,-1,sizeof(h));
cin>>n>>m;
for(int i=1; i<=n; i++) {
int x;
cin>>x>>v[i];
add(x,i);
}
dfs(0);
cout<<dp[0][m];
}