spark之读写Elasticsearch

最近有需求,要将spark的数据写入elasticsearch。亲自测试后,将结果进行分享:
直接上代码:

创建Maven工程pom文件:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>estest</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <spark.version>2.4.4</spark.version>
        <scala.version>2.11.12</scala.version>
        <hadoop.version>2.6.0</hadoop.version>
        <elasticsearch.version>7.12.0</elasticsearch.version>
    </properties>

    <dependencies>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>${spark.version}</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch-spark-20_2.11</artifactId>
            <version>${elasticsearch.version}</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.json4s/json4s-native -->
        <dependency>
            <groupId>org.json4s</groupId>
            <artifactId>json4s-native_2.12</artifactId>
            <version>3.6.11</version>
            <scope>provided</scope>
        </dependency>

    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <configuration>
                    <recompileMode>incremental</recompileMode>
                </configuration>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>2.2.1</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
      
### 回答1: Spark SQL 可以通过 Elasticsearch-Hadoop 插件来读写 Elasticsearch。该插件提供了一个 Elasticsearch 数据源,可以将 Elasticsearch 中的数据作为 Spark SQL 表进行查询和分析。 要使用 Elasticsearch-Hadoop 插件,需要在 Spark 配置文件中添加以下配置: ``` spark.es.nodes=<Elasticsearch 节点 IP> spark.es.port=<Elasticsearch 节点端口> ``` 然后,可以使用 Spark SQL 的 DataFrame API 或 SQL API 来读写 Elasticsearch 数据。以下是一些示例代码: ``` // 读取 Elasticsearch 中的数据 val df = spark.read.format("org.elasticsearch.spark.sql") .option("es.resource", "<Elasticsearch 索引>/<Elasticsearch 类型>") .load() // 将 DataFrame 中的数据写入 Elasticsearch df.write.format("org.elasticsearch.spark.sql") .option("es.resource", "<Elasticsearch 索引>/<Elasticsearch 类型>") .save() ``` 需要注意的是,Elasticsearch-Hadoop 插件的版本需要与 Elasticsearch 版本匹配。具体的版本对应关系可以参考官方文档。 ### 回答2: Spark SQL是一款强大的数据处理工具,可以实现对不同数据源的读取和处理,而Elasticsearch是一款流行的开源搜索引擎,在构建实时搜索和分析系统时非常有用。Spark SQL可以轻松地与Elasticsearch集成,方便地进行数据读取和写入操作。下面我们将详细介绍Spark SQL读写Elasticsearch的过程。 一、安装Spark Elasticsearch插件 在使用Spark SQL读写Elasticsearch之前,我们需要安装相应的插件以便于连接和处理数据。最常用的插件是elasticsearch-hadoop,我们可以使用以下命令进行安装: ``` bin/spark-shell --packages org.elasticsearch:elasticsearch-hadoop:7.10.2 ``` 其中,7.10.2是插件的版本。如果已经使用了其他版本的Spark,则需要使用相应的版本。 二、读取Elasticsearch数据 接下来我们将介绍如何使用Spark SQL从Elasticsearch中读取数据。首先,我们需要将Elasticsearch的数据加载到Spark SQL中,可以使用以下代码: ```scala import org.apache.spark.sql.SparkSession val spark = SparkSession .builder() .appName("ElasticsearchReader") .getOrCreate() val df = spark .read .format("org.elasticsearch.spark.sql") .option("es.nodes.wan.only", "true") .option("es.port", "9200") .option("es.nodes", "localhost") .load("index_name/_doc") ``` 其中,“org.elasticsearch.spark.sql”是Elasticsearch访问插件的格式,我们可以使用“option”配置来指定Elasticsearch的连接信息。这里我们使用“wan.only”选项将访问IP地址设置为公网IP,使用“port”选项将端口设置为9200,使用“nodes”选项将节点设置为本地主机。 最后,我们使用“load”方法将索引名和文档类型加载到Spark中。 三、写入数据到Elasticsearch 除了读取数据,Spark SQL还可以将数据写入Elasticsearch。我们可以使用以下代码将Spark数据框中的数据写入Elasticsearch: ```scala import org.apache.spark.sql.SparkSession val spark = SparkSession .builder() .appName("ElasticsearchWriter") .getOrCreate() val df = Seq((1,"John"),(2,"Tom"),(3,"Lisa")) .toDF("id", "name") df.write .format("org.elasticsearch.spark.sql") .option("es.nodes.wan.only", "true") .option("es.port", "9200") .option("es.nodes", "localhost") .mode("append") .save("index_name/_doc") ``` 这里我们使用了一个简单的数据框,将数据写入Elasticsearch。首先,我们使用“toDF”方法将数据集转换为Spark数据框。我们然后使用“write”方法将数据框保存到Elasticsearch中。我们同样可以使用“option”配置来指定Elasticsearch的连接信息。最后,我们使用“mode”方法设置写入模式并使用“save”方法写入数据。 四、用Spark SQL进行Elasticsearch聚合分析 使用Spark SQL读写Elasticsearch之后,我们可以使用Spark SQL的聚合分析功能对数据进行处理和分析。例如,我们可以使用以下代码来计算所有文档的平均值: ```scala import org.apache.spark.sql.SparkSession val spark = SparkSession .builder() .appName("ElasticsearchAnalyzer") .getOrCreate() val df = spark .read .format("org.elasticsearch.spark.sql") .option("es.nodes.wan.only", "true") .option("es.port", "9200") .option("es.nodes", "localhost") .load("index_name/_doc") df.groupBy("name").mean("age") ``` 这里我们使用了GroupBy和mean方法,来计算所有文档的平均值。这块相信你们做学术翻译肯定没问题,不过我有个问题,Elasticsearch是支持SQL查询的,那么我们在使用Spark SQL连接Elasticsearch的时候,就存在SQL的冲突吧,怎么解决呢? ### 回答3: Spark SQL是一种在Spark框架下的高性能、分布式、可扩展的SQL查询引擎。Spark SQL支持通过读写各种数据源来查询数据,其中包括Elasticsearch,这使得它成为在大规模数据上进行分析和探索的有力工具之一。 读取Elasticsearch数据源 在Spark SQL中,可以使用Elasticsearch连接器读取Elasticsearch数据源。连接器提供了从Elasticsearch读取数据的功能,并将其转换为RDD、DataFrame或Dataset。 在读取Elasticsearch数据源时,可以使用Elasticsearch Connector提供的选项和参数,例如索引和类型名称、查询条件、要检索的字段等。下面是一个使用连接器读取Elasticsearch数据源的示例: ```scala import org.elasticsearch.spark.sql._ val cfg = Map( "es.nodes" -> "localhost", "es.port" -> "9200", "es.index.auto.create" -> "true" ) // 配置选项 val df = spark.read.options(cfg).format("org.elasticsearch.spark.sql").load("INDEX_NAME/TYPE_NAME") df.show() ``` 在这个示例中,我们使用 `org.elasticsearch.spark.sql` 格式来指定数据源,然后使用 Spark SQL `read()` 方法读取 Index/Type 名称为 `index_name/type_name` 的 Elasticsearch 数据源。 写入Elasticsearch数据源 除了读取,Spark SQL也提供了将数据写入Elasticsearch的机制。可以使用与读取相同的Elasticsearch连接器来写入数据。以下是一个使用连接器将数据写入Elasticsearch的示例: ```scala import org.elasticsearch.spark.sql._ val cfg = Map( "es.nodes" -> "localhost", "es.port" -> "9200", "es.index.auto.create" -> "true" ) // 配置选项 // 创建一个 DataFrame 对象 val data = Seq( ("1", "John"), ("2", "Jane"), ("3", "Bob") ).toDF("id","name") data.write.options(cfg).format("org.elasticsearch.spark.sql").mode("overwrite").save("INDEX_NAME/TYPE_NAME") ``` 在这个示例中,我们首先创建一个 DataFrame 对象 `data`,然后使用与读取相同的连接器来写入数据到 Index/Type 名称为 `index_name/type_name` 的 Elasticsearch 数据源。 关于Spark SQL和Elasticsearch的更多信息和示例,可以参见官方文档和社区资源。总之,使用Spark SQL连接Elasticsearch是一种强大而灵活的方法,可以为分析和数据挖掘等场景提供很大的帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据翻身

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值