基于多尺度残差网络的美国西储大学轴承故障诊断代码

本文介绍了一种利用多尺度残差网络进行轴承故障诊断的方法,通过不同尺度的残差模块提取特征,结合MATLAB预处理和PythonPyTorch实现,使用美国西储大学数据集进行训练,展示了高准确率的故障诊断性能。
摘要由CSDN通过智能技术生成

多尺度残差网络由3个一维残差网络分支(branch)组成,每个branch 包含 3个相同的残差模块,各branch分支中的残差块的卷积核分别为1×3、1×5、1×7,通过融合故障信号在不同尺度下的故障特征,极大的提高了故障诊断的准确率。

采用MATLAB对数据进行预处理;网络训练环境为python3.7 与 pytorch1.8.0,既可以用CPU也可以用GPU。

实验的数据来自美国西储大学轴承故障诊断数据集,48k/0HP,总共10个故障类别。file1_data_process.m文件是对原始数据按7:2:1的比例进行划分,并保存在data_process.mat中。

file2_fft_preprocess.m是对划分后的data_process.mat进行FFT变换操作,并将处理后的数据保存在FFT.mat文件中。

“多尺度残差网络.py”即为所提网络模型。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值