多尺度残差网络由3个一维残差网络分支(branch)组成,每个branch 包含 3个相同的残差模块,各branch分支中的残差块的卷积核分别为1×3、1×5、1×7,通过融合故障信号在不同尺度下的故障特征,极大的提高了故障诊断的准确率。
采用MATLAB对数据进行预处理;网络训练环境为python3.7 与 pytorch1.8.0,既可以用CPU也可以用GPU。
实验的数据来自美国西储大学轴承故障诊断数据集,48k/0HP,总共10个故障类别。file1_data_process.m文件是对原始数据按7:2:1的比例进行划分,并保存在data_process.mat中。
file2_fft_preprocess.m是对划分后的data_process.mat进行FFT变换操作,并将处理后的数据保存在FFT.mat文件中。
“多尺度残差网络.py”即为所提网络模型。