采用双流卷积神经网络对美国西储大学轴承故障数据集进行融合诊断完整代码

文章介绍了使用双流CNN进行故障诊断的方法,该方法结合1D-CNN分析FFT频谱和2D-CNN处理小波时频图,提高了诊断准确率。数据预处理在MATLAB中完成,网络训练环境基于Python和PyTorch,实验数据来源于西储大学的轴承故障诊断数据集。
摘要由CSDN通过智能技术生成

双流CNN由两个通道构成,分别为1D-CNN与2D-CNN,其中1D-CNN的输入为故障信号的FFT频谱,2D-CNN的输入故障信号的小波时频图。经过卷积与池化操作后在Flatten层将两个通道的特征向量进行拼接,接着是全连接层与分类层。通过融合一维时域特征与二维时频特征,有效提高故障诊断的准确率。

采用MATLAB对数据进行预处理;网络训练环境为python3.7 与 pytorch1.8.0,既可以用CPU也可以用GPU。

实验的数据来自美国西储大学轴承故障诊断数据集,48k/0HP,总共10个故障类别。file1_data_process.m文件是对数据按7:2:1的比例进行划分,并保存在data_process.mat中。

Flie2_xiaobo_process是对划分后的data_process.mat进行小波时频变换操作,并保存在“小波时频图”文件夹中。

File3_fft_preprocess.m是对划分后的data_process.mat进行FFT变换操作,并将处理后的数据保存在FFT.mat文件中。

File4_FFT-CNN是采用一维卷积神经网络对FFT.mat进行故障分类。

Flie5_时频图-CNN是采用二维卷积神经网络对“小波时频图”文件夹中的故障时频图进行分类。

Flie6_FFT+时频图-CNN即双流CNN网络。

以下为实验结果图:

以下是使用 PyTorch 实现 GRU 模型对美国凯斯西储大学轴承故障数据集进行故障诊断的示例代码: ```python import torch import torch.nn as nn import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler # 读取数据 data = pd.read_csv('K001_1_48k_0_12hp_B_C3_0.csv', header=None) data = data.values[:, 1] data = data.reshape(-1, 1) # 数据预处理 scaler = MinMaxScaler(feature_range=(-1, 1)) data_scaled = scaler.fit_transform(data) # 定义超参数 input_size = 50 hidden_size = 32 num_layers = 2 output_size = 1 learning_rate = 0.001 num_epochs = 100 # 创建训练数据集 X = [] y = [] for i in range(input_size, len(data_scaled)): X.append(data_scaled[i-input_size:i]) y.append(data_scaled[i]) X, y = np.array(X), np.array(y) # 划分训练集和测试集 train_size = int(len(data_scaled) * 0.8) X_train, X_test = X[:train_size], X[train_size:] y_train, y_test = y[:train_size], y[train_size:] # 创建数据加载器 train_data = torch.utils.data.TensorDataset(torch.from_numpy(X_train).float(), torch.from_numpy(y_train).float()) train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True) # 定义 GRU 模型 class GRU(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(GRU, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x, h0): out, h = self.gru(x, h0) out = self.fc(out[:, -1, :]) return out, h model = GRU(input_size, hidden_size, num_layers, output_size) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(train_loader): # 前向传播 outputs, _ = model(inputs, None) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 10 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 预测测试集 with torch.no_grad(): inputs = torch.from_numpy(X_test).float() outputs, _ = model(inputs, None) predicted = scaler.inverse_transform(outputs.numpy()) actual = scaler.inverse_transform(y_test) # 计算 R2 得分 from sklearn.metrics import r2_score print('R2 score:', r2_score(actual, predicted)) ``` 在上述代码中,我们首先读取了凯斯西储大学轴承故障数据集,并进行了数据预处理。然后,我们定义了超参数,包括输入大小、隐藏层大小、层数、输出大小、学习率和训练轮数。接着,我们创建了训练数据集和数据加载器,并定义了 GRU 模型、损失函数和优化器。在训练循环中,我们对每个 mini-batch 执行前向传播、损失计算、反向传播和优化。在预测测试集时,我们使用训练好的模型进行前向传播,并将预测结果反归一化。最后,我们计算模型在测试集上的 R2 得分。
评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值