双流CNN由两个通道构成,分别为1D-CNN与2D-CNN,其中1D-CNN的输入为故障信号的FFT频谱,2D-CNN的输入故障信号的小波时频图。经过卷积与池化操作后在Flatten层将两个通道的特征向量进行拼接,接着是全连接层与分类层。通过融合一维时域特征与二维时频特征,有效提高故障诊断的准确率。
采用MATLAB对数据进行预处理;网络训练环境为python3.7 与 pytorch1.8.0,既可以用CPU也可以用GPU。
实验的数据来自美国西储大学轴承故障诊断数据集,48k/0HP,总共10个故障类别。file1_data_process.m文件是对数据按7:2:1的比例进行划分,并保存在data_process.mat中。
Flie2_xiaobo_process是对划分后的data_process.mat进行小波时频变换操作,并保存在“小波时频图”文件夹中。
File3_fft_preprocess.m是对划分后的data_process.mat进行FFT变换操作,并将处理后的数据保存在FFT.mat文件中。
File4_FFT-CNN是采用一维卷积神经网络对FFT.mat进行故障分类。
Flie5_时频图-CNN是采用二维卷积神经网络对“小波时频图”文件夹中的故障时频图进行分类。
Flie6_FFT+时频图-CNN即双流CNN网络。
以下为实验结果图: