SE-net是指在残差块中添加注意力机制,使模型关注与目标相关的特征通道并弱化其他无关的特征通道,从而达到提升模型性能的目的。
本次实验的数据来自美国西储大学轴承故障诊断数据集,48k/0HP,总共10个故障类别。在每个测试样本上添加了不同信噪比的白噪声(SNR)来模拟噪声干扰下的工作环境,实验结果表明SE-net模型具有很好的抗噪性能。
采用MATLAB对数据进行预处理;网络训练环境为python3.7 与 pytorch1.8.0,既可以用CPU也可以用GPU。
file1_data_process.m文件是对原始数据按7:2:1的比例进行划分,并保存在data_process.mat中。
File2_fft_preprocess.m是对划分后的data_process.mat进行FFT变换操作,并将处理后的数据保存在FFT.mat文件中。
“SE-net注意力残差网络模型.py”即为所提模型。
以下为实验结果(CPU跑的):