基于SE-net注意力网络的美国西储大学轴承故障诊断代码,可以用于微小故障工况下的故障诊断

SE-net是指在残差块中添加注意力机制,使模型关注与目标相关的特征通道并弱化其他无关的特征通道,从而达到提升模型性能的目的。

本次实验的数据来自美国西储大学轴承故障诊断数据集,48k/0HP,总共10个故障类别。在每个测试样本上添加了不同信噪比的白噪声(SNR)来模拟噪声干扰下的工作环境,实验结果表明SE-net模型具有很好的抗噪性能。

采用MATLAB对数据进行预处理;网络训练环境为python3.7 与 pytorch1.8.0,既可以用CPU也可以用GPU。

file1_data_process.m文件是对原始数据按7:2:1的比例进行划分,并保存在data_process.mat中。

File2_fft_preprocess.m是对划分后的data_process.mat进行FFT变换操作,并将处理后的数据保存在FFT.mat文件中。

“SE-net注意力残差网络模型.py”即为所提模型。

以下为实验结果(CPU跑的):

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值