✨前言✨
📘 博客主页:to Keep博客主页
🙆欢迎关注,👍点赞,📝留言评论
⏳首发时间:2024年5月6日
📨 博主码云地址:博主码云地址
📕参考书籍:《C++ Primer》《C++编程规范》
📢编程练习:牛客网+力扣网
**由于博主目前也是处于一个学习的状态,如有讲的不对的地方,请一定联系我予以改正!!!
1 搜索二叉树的定义
在二叉树的定义的基础上,在加上以下两种特征的树就叫做二叉搜索树:
1️⃣任何一棵子树的左节点的值都要大于根节点的值
2️⃣任何一棵子树的右节点都要小于根节点的值
所以二叉搜索树的中序遍历一定是有序的!
2 搜索二叉树的实现
我们需要一个节点,以下是节点模块
template<class K>
struct BSTreeNode {
typedef BSTreeNode<K> Node;
K _val;
Node* _left;
Node* _right;
BSTreeNode(const K& val = K())
:_val(val)
,_left(nullptr)
,_right(nullptr)
{}
};
我们再来定义一个二叉搜索树的类
template<class K>
class BinarysearchTree {
public:
typedef BSTreeNode<K> Node;
bool FindK(const K& key)();
//插入
bool Insert(const K& key)();
//删除
bool erase(const K& key)();
private:
Node* _root = nullptr;
};
2.1 查找函数
bool FindK(const K& key)
{
Node* cur = _root;
while (cur)
{
if (key > cur->_val)
{
cur = cur->_right;
}
else if (key < cur->_val)
{
cur = cur->_left;
}
else
{
return true;
}
}
return false;
}
2.2 插入操作
//插入
bool Insert(const K& key)
{
if (_root == nullptr)
{
_root = new Node(key);
return true;
}
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (key > cur->_val)
{
parent = cur;
cur = cur->_right;
}
else if (key < cur->_val)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
if (key > parent->_val)
{
parent->_right = new Node(key);
}
else {
parent->_left = new Node(key);
}
return true;
}
2.3 删除操作
和查找一样,首先就是要找到所要删除节点的位置!
2.3.1 左为空
如果删除的节点是左为空的节点,此时就会有以下三种示意图的情况
2.3.2 右为空
如果删除的节点是右为空的节点,此时也会有三种情况,如下图所示:
2.3.3 左右都不为空
如果删除的节点是左右都不为空的节点,此时就需要去右子树中寻找到最小值(也可以去左子树中找到最大值),进行交换,然后进行删除
完整的实现代码如下:
//删除
bool erase(const K& key)
{
Node* cur = _root;
Node* curParent = cur;
while (cur)
{
if (key > cur->_val)
{
curParent = cur;
cur = cur->_right;
}
else if (key < cur->_val)
{
curParent = cur;
cur = cur->_left;
}
else {
if (cur->_left == nullptr)
{
if (_root->_left == nullptr)
{
_root = _root->_right;
return true;
}
if (cur == curParent->_left)
{
curParent->_left = cur->_right;
}
else {
curParent->_right = cur->_right;
}
delete cur;
return true;
}
else if (cur->_right == nullptr)
{
if (_root->_right == nullptr)
{
_root = _root->_left;
return true;
}
if (cur == curParent->_left)
{
curParent->_left = cur->_left;
}
else {
curParent->_right = cur->_left;
}
delete cur;
return true;
}
else {
Node* curNext= cur->_right;
curParent = cur;
while (curNext->_left)
{
cur = curNext;
curNext = curNext->_left;
}
curParent->_val = curNext->_val;
if (cur->_right == curNext)
{
cur->_right = curNext->_right;
}
else {
cur->_left = curNext->_right;
}
delete curNext;
return true;
}
}
}
return false;
}