二叉搜索树

✨前言✨

📘 博客主页:to Keep博客主页
🙆欢迎关注,👍点赞,📝留言评论
⏳首发时间:2024年5月6日
📨 博主码云地址:博主码云地址
📕参考书籍:《C++ Primer》《C++编程规范》
📢编程练习:牛客网+力扣网
**由于博主目前也是处于一个学习的状态,如有讲的不对的地方,请一定联系我予以改正!!!

1 搜索二叉树的定义

在二叉树的定义的基础上,在加上以下两种特征的树就叫做二叉搜索树:
1️⃣任何一棵子树的左节点的值都要大于根节点的值
2️⃣任何一棵子树的右节点都要小于根节点的值

所以二叉搜索树的中序遍历一定是有序的!

2 搜索二叉树的实现

我们需要一个节点,以下是节点模块

template<class K>
struct BSTreeNode {
	typedef BSTreeNode<K> Node;
	K _val;
	Node* _left;
	Node* _right;

		BSTreeNode(const K& val = K())
		:_val(val)
		,_left(nullptr)
		,_right(nullptr)
	{}
};

我们再来定义一个二叉搜索树的类

	template<class K>
	class BinarysearchTree {
	public:
		typedef BSTreeNode<K> Node;
		bool FindK(const K& key)();
		//插入
		bool Insert(const K& key)();
		//删除
		bool erase(const K& key)();
	private:
		Node* _root = nullptr;
	};

2.1 查找函数


		bool FindK(const K& key)
		{
			Node* cur =  _root;
			while (cur)
			{
				if (key > cur->_val)
				{
					cur = cur->_right;
				}
				else if (key < cur->_val)
				{
					cur = cur->_left;
				}
				else
				{
					return true;
				}
			}
			return false;
		}

2.2 插入操作

//插入
bool Insert(const K& key)
{
	if (_root == nullptr)
	{
		_root = new Node(key);
		return true;
	}	
	Node* cur = _root;
	Node* parent = nullptr;
	while (cur)
	{
		
		if (key > cur->_val)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (key < cur->_val)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}
	if (key > parent->_val)
	{
		parent->_right = new Node(key);
	}
	else {
		parent->_left = new Node(key);
	}			
	return true;		
}

2.3 删除操作

和查找一样,首先就是要找到所要删除节点的位置!

2.3.1 左为空

如果删除的节点是左为空的节点,此时就会有以下三种示意图的情况
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3.2 右为空

如果删除的节点是右为空的节点,此时也会有三种情况,如下图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3.3 左右都不为空

如果删除的节点是左右都不为空的节点,此时就需要去右子树中寻找到最小值(也可以去左子树中找到最大值),进行交换,然后进行删除
在这里插入图片描述
在这里插入图片描述
完整的实现代码如下:

//删除
bool erase(const K& key)
{
	Node* cur = _root;
	Node* curParent = cur;
	
	while (cur)
	{
		if (key > cur->_val)
		{
			curParent = cur;
			cur = cur->_right;
		}
		else if (key < cur->_val)
		{
			curParent = cur;
			cur = cur->_left;
		}
		else {
			if (cur->_left == nullptr)
			{
				if (_root->_left == nullptr)
				{
					_root = _root->_right;
					return true;
				}
				if (cur == curParent->_left)
				{
					curParent->_left = cur->_right;		
				}
				else {
					curParent->_right = cur->_right;
				}
				delete cur;
				return true;
			}
			else if (cur->_right == nullptr)
			{
				if (_root->_right == nullptr)
				{
					_root = _root->_left;
					return true;
				}
				if (cur == curParent->_left)
				{
					curParent->_left = cur->_left;
				}
				else {
					curParent->_right = cur->_left;
				}
				delete cur;
				return true;
			}
			else {
				Node* curNext= cur->_right;
				curParent = cur;
				while (curNext->_left)
				{
					cur = curNext;
					curNext = curNext->_left;
				}

				curParent->_val = curNext->_val;

				if (cur->_right == curNext)
				{
					cur->_right = curNext->_right;
					
				}
				else {
					cur->_left = curNext->_right;
				}
				delete curNext;
				return true;
			}
		}
	}
	return false;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

to Keep

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值