ACwing1027 方格取数
**状态为f[k] [i1] [i2] : k为第几步,i1为第一次走的 行数 , i2 为第二次走的 行数。 **
可以不用再开两维用来表示【j1】【j2】
直接用k-i1 , k-i2用来表示j1 , j2.
考虑第一次走的下一步是否与第二次走的下一步是否相同,相同则只加一次w【i1】【j1】
不同则分别加上w【i1】【j1】,w【i2】【j2】
状态转移方程:
f
[
k
−
1
]
[
i
1
−
1
]
[
i
2
−
1
]
+
s
:
第
一
步
,
第
二
步
都
往
右
走
f[k-1][i1-1][i2-1]+s : 第一步,第二步都往右走
f[k−1][i1−1][i2−1]+s:第一步,第二步都往右走
f [ k − 1 ] [ i 1 − 1 ] [ i 2 ] + s : 第 一 步 往 右 走 , 第 二 步 往 下 走 f[k-1][i1-1][i2]+s : 第一步往右走,第二步往下走 f[k−1][i1−1][i2]+s:第一步往右走,第二步往下走
f [ k − 1 ] [ i 1 ] [ i 2 ] + s : 第 一 步 , 第 二 步 都 往 下 走 f[k-1][i1][i2]+s:第一步,第二步都往下走 f[k−1][i1][i2]+s:第一步,第二步都往下走
f [ k − 1 ] [ i 1 ] [ i 2 − 1 ] + s : 第 一 步 往 下 走 , 第 二 步 往 右 走 f[k-1][i1][i2-1]+s:第一步往下走,第二步往右走 f[k−1][i1][i2−1]+s:第一步往下走,第二步往右走
s 为 当前步 需要加的权值
f
[
k
]
[
i
1
]
[
i
2
]
=
m
a
x
(
f
[
k
]
[
i
1
]
[
i
2
]
,
f
[
k
−
1
]
[
i
1
−
1
]
[
i
2
]
+
s
,
f
[
k
−
1
]
[
i
1
]
[
i
2
]
+
s
,
f
[
k
−
1
]
[
i
1
]
[
i
2
−
1
]
+
s
,
f
[
k
−
1
]
[
i
1
−
1
]
[
i
2
−
1
]
+
s
)
;
f[k][i1][i2] = max(f[k][i1][i2],f[k-1][i1-1][i2]+s,f[k-1][i1][i2]+s,f[k-1][i1][i2-1]+s,f[k-1][i1-1][i2-1]+s);
f[k][i1][i2]=max(f[k][i1][i2],f[k−1][i1−1][i2]+s,f[k−1][i1][i2]+s,f[k−1][i1][i2−1]+s,f[k−1][i1−1][i2−1]+s);
import java.util.*;
public class Main{
static int N = 11;
static int[][] g = new int[N][N];
static int[][][] f = new int[2*N][N][N];
public static void main(String[] args){
Scanner in = new Scanner(System.in);
int n = in.nextInt();
while(true){
int x = in.nextInt();
int y = in.nextInt();
if(x == 0 && y ==0) break;
g[x][y] = in.nextInt();
}
for(int k = 2 ; k <= 2*n ; k++){
for(int i1 = 1 ; i1 <= n ; i1++){
for(int i2 = 1 ; i2 <= n ; i2++){
int j1 = k - i1;
int j2 = k - i2;
// System.out.println(j1 + " " + j2);
if(j1>=1&&j1<=n&&j2>=1&&j2<=n) {
int s = g[i1][j1] ;
if(i1!=i2){
s += g[i2][j2];
}
f[k][i1][i2] = Math.max(f[k][i1][i2],f[k-1][i1-1][i2]+s);
f[k][i1][i2] = Math.max(f[k][i1][i2],f[k-1][i1][i2]+s);
f[k][i1][i2] = Math.max(f[k][i1][i2],f[k-1][i1][i2-1]+s);
f[k][i1][i2] = Math.max(f[k][i1][i2],f[k-1][i1-1][i2-1]+s);
}
}
}
}
System.out.println(f[2*n][n][n]);
}
}