ACwing1027 方格取数

ACwing1027 方格取数

在这里插入图片描述

**状态为f[k] [i1] [i2] : k为第几步,i1为第一次走的 行数 , i2 为第二次走的 行数。 **

可以不用再开两维用来表示【j1】【j2】

直接用k-i1 , k-i2用来表示j1 , j2.

考虑第一次走的下一步是否与第二次走的下一步是否相同,相同则只加一次w【i1】【j1】

不同则分别加上w【i1】【j1】,w【i2】【j2】

状态转移方程:
f [ k − 1 ] [ i 1 − 1 ] [ i 2 − 1 ] + s : 第 一 步 , 第 二 步 都 往 右 走 f[k-1][i1-1][i2-1]+s : 第一步,第二步都往右走 f[k1][i11][i21]+s:

f [ k − 1 ] [ i 1 − 1 ] [ i 2 ] + s : 第 一 步 往 右 走 , 第 二 步 往 下 走 f[k-1][i1-1][i2]+s : 第一步往右走,第二步往下走 f[k1][i11][i2]+s:

f [ k − 1 ] [ i 1 ] [ i 2 ] + s : 第 一 步 , 第 二 步 都 往 下 走 f[k-1][i1][i2]+s:第一步,第二步都往下走 f[k1][i1][i2]+s

f [ k − 1 ] [ i 1 ] [ i 2 − 1 ] + s : 第 一 步 往 下 走 , 第 二 步 往 右 走 f[k-1][i1][i2-1]+s:第一步往下走,第二步往右走 f[k1][i1][i21]+s

s 为 当前步 需要加的权值
f [ k ] [ i 1 ] [ i 2 ] = m a x ( f [ k ] [ i 1 ] [ i 2 ] , f [ k − 1 ] [ i 1 − 1 ] [ i 2 ] + s , f [ k − 1 ] [ i 1 ] [ i 2 ] + s , f [ k − 1 ] [ i 1 ] [ i 2 − 1 ] + s , f [ k − 1 ] [ i 1 − 1 ] [ i 2 − 1 ] + s ) ; f[k][i1][i2] = max(f[k][i1][i2],f[k-1][i1-1][i2]+s,f[k-1][i1][i2]+s,f[k-1][i1][i2-1]+s,f[k-1][i1-1][i2-1]+s); f[k][i1][i2]=max(f[k][i1][i2],f[k1][i11][i2]+s,f[k1][i1][i2]+s,f[k1][i1][i21]+s,f[k1][i11][i21]+s);

import java.util.*;
public class Main{
    static int N = 11;
    static int[][] g = new int[N][N];
    static int[][][] f =  new int[2*N][N][N];
    public static void main(String[] args){
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        while(true){
            int x = in.nextInt();
            int y = in.nextInt();
            if(x == 0 && y ==0) break;
            g[x][y] = in.nextInt();
        }
        for(int k = 2 ; k <= 2*n ; k++){
            for(int i1 = 1 ; i1 <= n ; i1++){
                for(int i2 = 1 ; i2 <= n ; i2++){
                    int j1 = k - i1;
                    int j2 = k - i2;
                    // System.out.println(j1 + " " + j2);
                    if(j1>=1&&j1<=n&&j2>=1&&j2<=n) {
                        int s = g[i1][j1] ;
                        if(i1!=i2){
                            s += g[i2][j2];
                        }
                        f[k][i1][i2] = Math.max(f[k][i1][i2],f[k-1][i1-1][i2]+s);
                        f[k][i1][i2] = Math.max(f[k][i1][i2],f[k-1][i1][i2]+s);
                        f[k][i1][i2] = Math.max(f[k][i1][i2],f[k-1][i1][i2-1]+s);
                        f[k][i1][i2] = Math.max(f[k][i1][i2],f[k-1][i1-1][i2-1]+s);
                    }
                }
            }
        }

        System.out.println(f[2*n][n][n]);

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

渝北最后的单纯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值