SAR影像到光学影像的翻译方法
一、SAR影像翻译流程
SAR 影像翻译为光学影像的过程可以划分为理解和转换两个环节。理解是指分析和解释SAR 影像所表达的信息;转换则是将SAR 图像所包含的空间信息按照光学影像的光谱和纹理特征来重新表达。
SAR 影像信息丰富,在影像理解和转换过程中,都会不同程度的损失一些信息。应该始终围绕应用目标,对SAR 影像中描述建筑物、道路、河流等各类地物的形状和边界等显著的几何结构特征,采用各类特征提取算法进行有效提取,然后对
特征信息进行几何变换,再利用光学影像的光谱特性来合理表达,从而保证翻译前后影像所包含的内容基本一致。
- 影像预处理。SAR 影像的斑点噪声,严重影响了SAR 图像的特征提取和目标识别,翻译前需要先采用Lee滤波或Frost滤波等算法进行去噪处理。
- 依据SAR 影像上不同地物的灰度、纹理等特征,采用支持向量机(supportvectormachine,SVM)、人工神经网络(artificialneuralnetwork,ANN)或决策树等机器学习算法进行分类。
- 从翻译知识库的样本库中搜索或从参考光学影像上人工采集所需类别的光学样本,根据目标转换的复杂程度对SAR 影像中提取的不同地物目标区域分别进行填充表达。
- 将SAR 影像上分别翻译的各类目标根据像素空间位置合成一幅完整的翻译结果图像。
- 为了衡量翻译效果,可以与真实的光学影像进行对比来定性或定量评价。
影像翻译知识库
利用特征提取算法提取样本的灰度均值、方差等光谱统计特征;灰度共生矩阵、Gabor纹理、小波变换纹理等纹理特征;Hu 不变矩、面积、边界、长度、长宽比、形状因子和对称性等形状统计特征。将这些特征作为样本数据,利用SVM、ANN等机器学习算法对其进行学习和训练,形成不同地物的分类模型。根据同一地物在SAR 影像和光学影像上的特征对比,确定不同地物的映射关系和特征转换规则。
二、SAR影像翻译方法
1、基于样本的纹理合成算法
基于样本的纹理合成算法主要有“点匹配”和“块拼接”两种合成方式。“块拼接”纹理合成算法每次合成一块纹理,而不是合成一个像素点,样本块中同时蕴含纹理和结构信息,合成速度和质量都较“点匹配”方法有很大提高。
ImageQuilting 纹理合成算法基于马尔科夫随机场原理,每次从样图中搜索一个匹配块,使得它们之间重叠部分的像素具有最小的误差平方和,然后将整个匹配块拼接到已合成图像中。算法的步骤为:① 按照扫描线顺序逐块合成输出纹理;② 在输入图像中搜索符合条件的匹配块,从中随机选择一块;③ 计算新选取的纹理块和已合成块重叠区域的误差,找到最佳分割路径作为新纹理块的边界,将新纹理块贴入到合成图中;④ 重复以上过程,直至合成结束。
2、基于样本的纹理合成实验
基于样本的纹理合成算法中,纹理块的大小对合成结果有较大影响。纹理块应该能够反映整个纹理的结构信息,如果块太小,原样图的特征没有很好的传递到合成结果中,有可能引起纹理特征变形。如果块过大,块与块之间的接缝会比较明显。迭代次数、水平或垂直方向的重叠度等因素对纹理合成效果也有影响。为了能够适应不同纹理目标的合成,并有效调节纹理合成效果,本文编程实现并改进了ImageQuilting 纹理合成算法,给出了迭代次数、纹理块大小、水平或垂直方
向的重叠度、每次迭代过程中纹理块缩减因子等可动态调节的参数。