算法学习
文章平均质量分 73
零 度°
这个作者很懒,什么都没留下…
展开
-
算法学习10——机器学习算法(2)
上一章对机器学习以及几个具体算法进行了介绍,但是机器学习的涵盖范围过于宽泛,因此本文是对上一章内容的补充,将介绍几种常见的机器学习算法,包括朴素贝叶斯、支持向量机、K-means聚类、随机森林和梯度提升树,并提供每种算法的Python代码示例。原创 2024-07-24 20:18:07 · 1052 阅读 · 0 评论 -
算法学习9——机器学习算法(1)
机器学习是人工智能的一个分支,通过从数据中学习模型来进行预测或决策。本文将介绍几种常见的机器学习算法,包括线性回归、逻辑回归、决策树、支持向量机和K最近邻,并提供每种算法的Python代码示例。原创 2024-07-24 20:09:53 · 599 阅读 · 0 评论 -
算法学习8——随机算法
随机算法是一类在算法执行过程中使用随机选择的算法。其行为可能因随机选择的不同而有所不同,但在大多数情况下能够给出高效的解。随机算法通常用于求解复杂问题,如蒙特卡罗方法、快速排序等。原创 2024-07-23 17:06:40 · 505 阅读 · 0 评论 -
算法学习7——回溯算法
回溯算法是一种试探性搜索算法,通过递归的方式逐步构建解决方案,并在发现当前路径不满足条件时回退到上一步。回溯算法特别适用于组合优化问题,如全排列、组合、子集和图的着色问题等。原创 2024-07-23 16:59:12 · 511 阅读 · 0 评论 -
算法学习6——贪心算法
贪心算法是一种在每一步选择中都采取当前状态下最优或最有利的选择的算法。其核心思想是通过一系列局部最优选择来达到全局最优解。贪心算法广泛应用于各种优化问题,如最短路径、最小生成树、背包问题等。原创 2024-07-22 21:23:30 · 4255 阅读 · 0 评论 -
算法学习5——图算法
Dijkstra算法用于计算单源最短路径,即从一个起始节点到所有其他节点的最短路径。它适用于非负权重的图,通过贪心策略逐步找到最短路径。原创 2024-07-22 21:17:59 · 1011 阅读 · 0 评论 -
算法学习4——动态规划
动态规划是一种强大的算法设计技术,适用于解决许多复杂的最优化问题。通过将问题分解为子问题,并利用存储子问题解的方式来避免重复计算,动态规划可以显著提高计算效率。本文介绍了动态规划的基本思想、实现步骤,以及几个经典问题的Python代码示例。掌握动态规划技巧,将有助于你在编程竞赛和实际项目中解决更多复杂的问题。原创 2024-07-21 19:50:04 · 867 阅读 · 0 评论 -
算法学习3——搜索算法
本文介绍了三种常见的搜索算法:二分查找、深度优先搜索(DFS)和广度优先搜索(BFS)。二分查找通过折半搜索已排序数组,深度优先搜索通过递归或栈深度探索树或图,而广度优先搜索通过队列逐层遍历树或图。当然在文章里给出的都是最基础的实例,要想在实际中加以运用,还需要进步不得练习分析。关于更高阶的搜索算法,将在今后的学习中逐步向大家展示。原创 2024-07-21 19:39:28 · 532 阅读 · 0 评论 -
算法学习2——排序算法(2)
上一篇介绍了几种常见且使用较多的排序算法,本章主要是一个进阶内容,介绍三个较为复杂的算法。原创 2024-07-20 22:08:43 · 541 阅读 · 3 评论 -
算法学习1——排序算法(1)
排序算法是计算机科学中的基础算法,用于将元素按照一定的顺序排列。排序算法有多种,每种都有其适用场景和优缺点。本文将介绍几种常见的排序算法,并给出每种算法的 Python 实现。原创 2024-07-20 22:02:53 · 657 阅读 · 0 评论