二分法讲解
二分的本质 : 按一定性质可以将序列一分为二
整数集合上的二分
假设集合是单调递增序列
最终答案处于闭区间[l, r]以内,处理的内容是[l, r)的集合,循环以l == r结束,每次二分的中间值mid会归属左半段与右半段二者之一。
查找右半段的集合(右半段是大于等于目标值),单调递增序列a中查找>= x最小的一个,即x或x的后继
while l < r :
mid = (l + r) >> 1 # 右半段集合 + 0
r = mid if a[mid] >= x else l = mid + 1
return a[l]
查找左半段集合(左半段小于等于目标值),单调递增序列a中查找<= x最大的一个,即x或x的前驱
while l < r :
mid = (l + r + 1) >> 1 # 左半段集合 + 1
l = mid if a[mid] <= x else r = mid - 1
return a[l]
为什么查找左半段的时候需要用(l + r + 1) >> 1而不是(l + r) >> 1呢?因为更新l = mid过程中如果此时r = l + 1,更新时l依然不变,下次循环依旧这样,会陷入死循环。
通过将集合扩大的方式,来处理无解情况
查找右半边的话将集合[1, n]扩大为[1, n + 1],把越界的下标包含进来。
查找左半边的话将集合[1, n]扩大为[0, n],把越界的下标包含进来。如果最后二分终止与扩大后的这个越界下标上,则说明a中不存在所求的数。
最简单的办法是比较a[l]与目标值是否相等
流程
- 具体分析题目,确定左右半段哪个是可行区间,以及mid归属哪一段
- 选择r,l,mid形式。
- 终止条件为l == r,该值就是答案所在。
实数域上的二分
确定好精度eps,一般需要保留k位小数,esp = 10 ^-(k + 2);
while l + 1e-5 < r :
mid = (l + r) / 2;
if calc(mid) > target: r = mid
else : l = mid
}
精度不好确定,则采取循环固定次数的二分法
for i in range(100) :
mid = (l + r) >> 1
if calc(mid) > target : r = mid
else : l = mid
三分求单峰函数极值
以单峰函数f为例,定义域[l, r]任取两个点lmid与rmid
f(lmid) < f(rmid), lmid肯定在极大值左侧,所以l = lmid
f(lmid) > f(rmid), r = rmidlmid与rmid取的距离二等分点两侧极近的地方越好
若存在f(lmid) == f(rmid),则不能用三分法