机器学习期中考试

1、使用KNN算法对两个未知类型的样本进行分类(冰川水或者湖泊水),其中K=3,即选择最近的3个邻居。(20分)
样本	Ca+浓度	Mg+浓度	Na+浓度	Cl-浓度	类型
A	0.2	0.5	0.1	0.1	湖泊水
B	0.4	0.3	0.4	0.3	冰川水
C	0.3	0.4	0.6	0.3	湖泊水
D	0.2	0.6	0.2	0.1	湖泊水
E	0.5	0.5	0.1	0	冰川水
F	0.3	0.3	0.4	0.4	冰川水
G	0.3	0.3	0.1	0.2	?冰川水
H	0.1	0.4	0.2	0.2	?湖泊水

学生答案:
解:
D i s t a n c e ( G , A ) 2 = 0.1 ; D i s t a n c e ( G , B ) 2 = 0.03 ; D i s t a n c e ( G , C ) 2 = 0.11 Distance(G,A)^2=0.1; Distance(G,B)^2=0.03; Distance(G,C)^2=0.11 Distance(G,A)2=0.1;Distance(G,B)2=0.03;Distance(G,C)2=0.11
D i s t a n c e ( G , D ) 2 = 0.12 ; D i s t a n c e ( G , E ) 2 = 0.16 ; D i s t a n c e ( G , F ) 2 = 0.05 Distance(G,D)^2=0.12; Distance(G,E)^2=0.16; Distance(G,F)^2=0.05 Distance(G,D)2=0.12;Distance(G,E)2=0.16;Distance(G,F)2=0.05
G的三个最近的邻居为B,F,A,因此G的分类为冰川水
D i s t a n c e ( H , A ) 2 = 0.03 ; D i s t a n c e ( H , B ) 2 = 0.18 ; D i s t a n c e ( H , C ) 2 = 0.22 Distance(H,A)^2=0.03; Distance(H,B)^2=0.18; Distance(H,C)^2=0.22 Distance(H,A)2=0.03;Distance(H,B)2=0.18;Distance(H,C)2=0.22
D i s t a n c e ( H , D ) 2 = 0.03 ; D i s t a n c e ( H , E ) 2 = 0.21 ; D i s t a n c e ( H , F ) 2 = 0.16 Distance(H,D)^2=0.03; Distance(H,E)^2=0.21; Distance(H,F)^2=0.16 Distance(H,D)2=0.03;Distance(H,E)2=0.21;Distance(H,F)2=0.16
H的三个最近的邻居为A,D,F,因此H的分类为湖泊水
2、使用CART决策树算法对两个未知类型的样本进行分类。(使用ID3决策树算法对两个未知类型的样本进行分类。)(20分)
Ca+浓度	Mg+浓度	Na+浓度	Cl-浓度	类型
低	高	高	高	冰川水
高	低	高	高	冰川水
低	高	低	低	冰川水
高	高	低	低	冰川水
低	低	低	低	湖泊水
高	低	低	低	湖泊水
低	高	高	低	湖泊水
高	低	高	低	湖泊水
低	高	高	低	?湖泊水
高	高	低	高	?冰川水

CART算法:
对样本集S,计算其在各个属性划分上的基尼指数。
1)
G i n i ( S , C a + 浓度 ) = 4 / 8 [ 1 − ( 2 / 4 ) 2 − ( 2 / 4 ) 2 ] + 4 / 8 [ 1 − ( 2 / 4 ) 2 − ( 2 / 4 ) 2 ] = 0.5 Gini(S,Ca+浓度)=4/8 [1-(2/4)^2-(2/4)^2 ]+4/8 [1-(2/4)^2-(2/4)^2 ] = 0.5 Gini(S,Ca+浓度)=4/8[1(2/4)2(2/4)2]+4/8[1(2/4)2(2/4)2]=0.5
2)
G i n i ( S , M g + 浓度 ) = 4 / 8 [ 1 − ( 3 / 4 ) 2 − ( 1 / 4 ) 2 ] + 4 / 8 [ 1 − ( 1 / 4 ) 2 − ( 3 / 4 ) 2 ] = 0.375 Gini(S,Mg+浓度)=4/8 [1-(3/4)^2-(1/4)^2 ]+4/8 [1-(1/4)^2-(3/4)^2 ] = 0.375 Gini(S,Mg+浓度)=4/8[1(3/4)2(1/4)2]+4/8[1(1/4)2(3/4)2]=0.375
3)
G i n i ( S , N a + 浓度 ) = 4 / 8 [ 1 − ( 2 / 4 ) 2 − ( 2 / 4 ) 2 ] + 4 / 8 [ 1 − ( 2 / 4 ) 2 − ( 2 / 4 ) 2 ] = 0.5 Gini(S,Na+浓度)=4/8 [1-(2/4)^2-(2/4)^2 ]+4/8 [1-(2/4)^2-(2/4)^2 ] = 0.5 Gini(S,Na+浓度)=4/8[1(2/4)2(2/4)2]+4/8[1(2/4)2(2/4)2]=0.5
4)
G i n i ( S , C l − 浓度 ) = 4 / 8 [ 1 − ( 2 / 4 ) 2 − ( 2 / 4 ) 2 ] + 4 / 8 [ 1 − ( 4 / 4 ) 2 ] = 0.25 Gini(S,Cl-浓度)=4/8 [1-(2/4)^2-(2/4)^2 ]+4/8 [1-(4/4)^2 ] = 0.25 Gini(S,Cl浓度)=4/8[1(2/4)2(2/4)2]+4/8[1(4/4)2]=0.25
Cl-浓度属性的基尼指数最小,将Cl-浓度属性作为第一个划分属性,将集合S划分为以下两个子集:
S1(高):

Ca+浓度	Mg+浓度	Na+浓度	类型
低	高	高	冰川水
高	低	高	冰川水

S2(低):
Ca+浓度	Mg+浓度	Na+浓度	类型
低	高	低	冰川水
高	高	低	冰川水
低	低	低	湖泊水
高	低	低	湖泊水
低	高	高	湖泊水
高	低	高	湖泊水

对样本集S1,所有样本均属于同一类型:冰川水。
对样本集S2,计算其在各个属性划分上的基尼指数:
1)
G i n i ( S 2 , C a + 浓度 ) = 2 / 6 [ 1 − ( 1 / 2 ) 2 − ( 1 / 2 ) 2 ] + 4 / 6 [ 1 − ( 2 / 4 ) 2 − ( 2 / 4 ) 2 ] = 0.5 Gini(S2,Ca+浓度)=2/6 [1-(1/2)^2-(1/2)^2 ]+4/6 [1-(2/4)^2-(2/4)^2 ] = 0.5 Gini(S2,Ca+浓度)=2/6[1(1/2)2(1/2)2]+4/6[1(2/4)2(2/4)2]=0.5
2)
G i n i ( S 2 , M g + 浓度 ) = 2 / 6 [ 1 − ( 2 / 2 ) 2 ] + 4 / 6 [ 1 − ( 3 / 4 ) 2 − ( 1 / 4 ) 2 ] = 0.25 Gini(S2,Mg+浓度)=2/6 [1-(2/2)^2 ]+4/6 [1-(3/4)^2-(1/4)^2 ] =0.25 Gini(S2,Mg+浓度)=2/6[1(2/2)2]+4/6[1(3/4)2(1/4)2]=0.25
3)
G i n i ( S 2 , N a + 浓度 ) = 2 / 6 [ 1 − ( 2 / 2 ) 2 ] + 4 / 6 [ 1 − ( 2 / 4 ) 2 − ( 2 / 4 ) 2 ] = 0.333 Gini(S2,Na+浓度)=2/6 [1-(2/2)^2 ]+4/6 [1-(2/4)^2-(2/4)^2 ] =0.333 Gini(S2,Na+浓度)=2/6[1(2/2)2]+4/6[1(2/4)2(2/4)2]=0.333
可以看出Gini(S2,Mg+浓度)最小,所以应该选择Mg+浓度属性作为测试属性。
Mg+浓度属性将样本集划分为两个子集:
1)S21
Ca+浓度	Na+浓度	类型
低	低	冰川水
高	低	冰川水
低	高	湖泊水

2)S22
Ca+浓度	Na+浓度	类型
低	低	湖泊水
高	低	湖泊水
高	高	湖泊水

对样本集S21,计算其在各个属性划分上的基尼指数:
1)
G i n i ( S 21 , C a + 浓度 ) = 2 / 3 [ 1 − ( 1 / 2 ) 2 − ( 1 / 2 ) 2 ] + 1 / 3 [ 1 − ( 1 / 1 ) 2 ] = 0.333 Gini(S21,Ca+浓度)=2/3 [1-(1/2)^2-(1/2)^2 ]+1/3 [1-(1/1)^2 ] =0.333 Gini(S21,Ca+浓度)=2/3[1(1/2)2(1/2)2]+1/3[1(1/1)2]=0.333
2)
G i n i ( S 21 , N a + 浓度 ) = 2 / 3 [ 1 − ( 2 / 2 ) 2 ] + 1 / 3 [ 1 − ( 1 / 1 ) 2 ] = 0 Gini(S21,Na+浓度)=2/3 [1-(2/2)^2 ]+1/3 [1-(1/1)^2 ] =0 Gini(S21,Na+浓度)=2/3[1(2/2)2]+1/3[1(1/1)2]=0
可以看出Gini(S2,Na+浓度)最小,所以应该选择Na+浓度浓度属性作为测试属性。
Na+浓度属性将样本集划分为两个子集, 并且各个子集中的样本都属于同一个类型。

对样本集S22,所有样本均属于同一类型湖泊水。
决策树构造完毕,如下图所示。
在这里插入图片描述

图1 选择Na+浓度作为节点
由上面决策树,得第一个待识别样本类型为湖泊水;第二个待识别样本类型为冰川水。
3、如下表所示的数据集,其在二维空间中的分布情况如图1所示,用户输入ε=1,MinPts=5,采用DBSCAN算法对表中数据进行聚类。(20分)
序号	属性1	属性2	序号	属性1	属性2
1	1	0	7	4	1
2	4	0	8	5	1
3	0	1	9	0	2
4	1	1	10	1	2
5	2	1	11	4	2
6	3	1	12	1	3
在这里插入图片描述

第一类:{1,3,4,5,10}
第二类:{2,6,7,8,11}

4、已知数据集如表1所示,使用朴素Bayes算法预测气候状况为雨天,高温,湿度中等。微风时,是否适合户外运动?(20分)
表1 数据集信息
天气情况x1	温度情况x2	湿度情况x3	风力情况x4	户外运动Y
晴朗	高	大	微风	不适合n
晴朗	高	大	强风	不适合n
阴天	高	大	微风	适合y
下雨	中	大	微风	适合y
下雨	低	中等	微风	适合y
下雨	低	中等	强风	不适合n
阴天	低	中等	强风	适合y
晴朗	中	大	微风	不适合n
晴朗	低	中等	微风	适合y
下雨	中	中等	微风	适合y

解:
即求X={下雨,高,中等,威风}的户外运动为可以的后验概率P(Y=y|X)和为不可以的后验概率P(Y=n|X)两者值中较大者为X的预测值。
根据Bayes定理,
P ( Y = y ∣ X ) = P ( X ∣ Y = y ) ∗ P ( Y = y ) = P ( x 1 ∣ Y = y ) ∗ P ( x 2 ∣ Y = y ) ∗ P ( x 3 ∣ Y = y ) ∗ P ( x 4 ∣ Y = y ) ∗ P ( Y = y ) P(Y=y|X)\\= P(X|Y=y)*P(Y=y) \\= P(x_1|Y=y)* P(x_2|Y=y)* P(x_3|Y=y)* P(x_4|Y=y)*P(Y=y) P(Y=yX)=P(XY=y)P(Y=y)=P(x1Y=y)P(x2Y=y)P(x3Y=y)P(x4Y=y)P(Y=y)
这里, P ( x 1 ∣ Y = y ) = P ( x 1 = 下雨 ∣ Y = y ) = 3 / 6 P(x_1|Y=y)= P(x_1=下雨|Y=y)=3/6 P(x1Y=y)=P(x1=下雨Y=y)=3/6
P ( x 2 ∣ Y = y ) = P ( x 2 = 高 ∣ Y = y ) = 1 / 6 P(x_2|Y=y)= P(x_2=高|Y=y)=1/6 P(x2Y=y)=P(x2=Y=y)=1/6
P ( x 3 ∣ Y = y ) = P ( x 3 = 中等 ∣ Y = y ) = 4 / 6 P(x_3|Y=y)= P(x_3=中等|Y=y)=4/6 P(x3Y=y)=P(x3=中等Y=y)=4/6
P ( x 4 ∣ Y = y ) = P ( x 4 = 微风 ∣ Y = y ) = 5 / 6 P(x_4|Y=y)= P(x_4=微风|Y=y)=5/6 P(x4Y=y)=P(x4=微风Y=y)=5/6
$P(Y=y)= 6/10 $
因此, P ( Y = y ∣ X ) = 3 / 6 ∗ 1 / 6 ∗ 4 / 6 ∗ 5 / 6 ∗ 6 / 10 = 1 / 36 P(Y=y|X)= 3/6*1/6*4/6*5/6*6/10=1/36 P(Y=yX)=3/61/64/65/66/10=1/36
同理,计算 P ( Y = n ∣ X ) = P ( X ∣ Y = n ) ∗ P ( Y = n ) = P ( x 1 ∣ Y = n ) ∗ P ( x 2 ∣ Y = n ) ∗ P ( x 3 ∣ Y = n ) ∗ P ( x 4 ∣ Y = n ) ∗ P ( Y = n ) P(Y=n|X)= P(X|Y=n)*P(Y=n)=P(x1|Y=n)* P(x2|Y=n)* P(x3|Y=n)* P(x4|Y=n)*P(Y=n) P(Y=nX)=P(XY=n)P(Y=n)=P(x1∣Y=n)P(x2∣Y=n)P(x3∣Y=n)P(x4∣Y=n)P(Y=n)
其中,
P ( x 1 ∣ Y = n ) = P ( x 1 = 下雨 ∣ Y = n ) = 1 / 4 P(x1|Y=n)= P(x1=下雨|Y=n)=1/4 P(x1∣Y=n)=P(x1=下雨Y=n)=1/4
P ( x 2 ∣ Y = n ) = P ( x 2 = 高 ∣ Y = n ) = 2 / 4 P(x2|Y=n)= P(x2=高|Y=n)=2/4 P(x2∣Y=n)=P(x2=Y=n)=2/4
P ( x 3 ∣ Y = n ) = P ( x 3 = 中等 ∣ Y = n ) = 1 / 4 P(x3|Y=n)= P(x3=中等|Y=n)=1/4 P(x3∣Y=n)=P(x3=中等Y=n)=1/4
P ( x 4 ∣ Y = n ) = P ( x 4 = 微风 ∣ Y = n ) = 2 / 4 P(x4|Y=n)= P(x4=微风|Y=n)=2/4 P(x4∣Y=n)=P(x4=微风Y=n)=2/4
P ( Y = n ) = 4 / 10 P(Y=n)= 4/10 P(Y=n)=4/10
因此, P ( Y = n ∣ X ) = 1 / 4 ∗ 2 / 4 ∗ 1 / 4 ∗ 2 / 4 ∗ 4 / 10 = 1 / 160 P(Y=n|X)= 1/4*2/4*1/4*2/4*4/10=1/160 P(Y=nX)=1/42/41/42/44/10=1/160
因为 P ( Y = y ∣ X ) > P ( Y = n ∣ X ) P(Y=y|X)> P(Y=n|X) P(Y=yX)>P(Y=nX),故气候状况为雨天,高温,湿度中等,微风时,户外运动应为适合。

5、假如空间中的五个点{A,B,C,D,E},各点之间的距离关系如表2所示,设初始聚类中心点为{A,B},根据所给的数据对其运行K-中心点算法实现第一次迭代后的聚类划分结果及相应的两个中心点(K=2)。(20分)
样本点 A B C D E
A 0 1 2 3 4
B 1 0 3 5 2
C 2 3 0 1 4
D 3 5 1 0 6
E 4 2 4 6 0

根据已知条件,当两个初始中心点为{A,B}时,所得划分为{A,C,D}和{B,E}。
第一次迭代:
假定中心点{A,B}分别被非中心点{C,D,E}替换,根据K-中心点算法需要计算下列代价: T C A C TC_{AC} TCAC T C A D TC_{AD} TCAD T C A E 、 T C B C 、 T C B D 和 T C B E TC_{AE}、TC_{BC}、TC_{BD}和TC_{BE} TCAETCBCTCBDTCBE。其中 T C A C TC_{AC} TCAC表示中心点A被非中心点C代替后的总代价。下面以 T C A C TC_{AC} TCAC为例说明计算过程。
当A被C代替后,看各对象的变化情况。
A:因A离B近, C A A C = d ( A , B ) − d ( A , A ) = 1 − 0 = 1 。 C_{AAC}=d(A,B)-d(A,A)=1-0=1。 CAAC=d(A,B)d(A,A)=10=1
B:B不受影响, C B A C = 0 C_{BAC}=0 CBAC=0
C: C C A C = d ( C , C ) − d ( C , A ) = 0 − 2 = − 2 C_{CAC}=d(C,C)-d(C,A)=0-2=-2 CCAC=d(C,C)d(C,A)=02=2
D: C D A C = d ( D , C ) − d ( D , A ) = 1 − 3 = − 2 C_{DAC}=d(D,C)-d(D,A)=1-3=-2 CDAC=d(D,C)d(D,A)=13=2
E: C E A C = 0 C_{EAC}=0 CEAC=0
于是, T C A C = C A A C + C B A C + C C A C + C D A C + C E A C = 1 + 0 − 2 − 2 + 0 = − 3 TC_{AC}= C_{AAC}+ C_{BAC}+ C_{CAC} + C_{DAC}+ C_{EAC}=1+0-2-2+0=-3 TCAC=CAAC+CBAC+CCAC+CDAC+CEAC=1+022+0=3。同理,可以计算出: T C A D = − 3 , T C A E = 2 , T C B C = − 1 , T C B D = − 1 , T C B E = − 1 TC_{AD}=-3,TC_{AE}=2,TC_{BC} =-1,TC_{BD}=-1,TC_{BE}=-1 TCAD=3TCAE=2TCBC=1TCBD=1TCBE=1
选取最小代价,有两种选择。
选取 T C A C TC_{AC} TCAC为最小代价时,则两个中心点为{B,C},样本被重新划分为{ A,B,E}和{C,D}两个簇。
选取 T C A D TC_{AD} TCAD为最小代价时,则两个中心点为{B,D},样本被重新划分为{ A,B,E}和{C,D}两个簇。

### 回答1: mid机器学习2004年期中考试是2004年进行的一次机器学习课程的期中考试。该考试旨在对学生对于机器学习的理解和掌握程度进行评估。 在这次考试中,我猜测会包括以下内容: - 机器学习的基本概念:如何定义、目标和应用领域等。 - 机器学习算法:如决策树、朴素贝叶斯、支持向量机等。 - 机器学习的评估指标:如准确率、召回率、F1分数等。 - 特征选择和特征抽取:如何选择和提取对数据分类有用的特征。 - 模型训练和测试:如何使用数据集来训练和测试机器学习模型。 - 处理过拟合和欠拟合:如何解决机器学习模型出现过拟合欠拟合的问题。 在准备考试时,我会通过以下方式来提高自己的准备平: - 复习课堂讲授的内容,重点关注课件中的示例和步骤。 - 做练习题和习题集,检验自己对概念和算法的理解和运用能力。 - 阅读相关的机器学习教材和论文,了解最新的研究进展和应用案例。 - 参与学习小组与同学讨论,互相学习和解决问题。 - 寻找机器学习竞赛项目,实践应用所学知识。 考试结束后,我会总结自己的答题情况,分析和反思自己的不足和问题,以便在期末考试前做出相应调整和提高。通过这次考试,我期望能够深入理解机器学习的基本概念与原理,并具备独立解决实际问题的能力。 ### 回答2: mid机器学习2004年期中考试机器学习领域中的一次重要考试,旨在评估学生对机器学习相关知识的理解和应用能力。 考试内容包括以下几个方面: 1. 机器学习基础知识:包括机器学习的定义、分类和应用领域等。 2. 监督学习算法:如线性回归、逻辑回归、决策树等,要求学生掌握这些算法的原理和应用场景。 3. 无监督学习算法:如聚类、主成分分析等,要求学生了解这些算法的概念和常见使用方法。 4. 模型评估与选择:要求学生了解模型评估的指标,如准确率、精确度、召回率等,以及如何选择最佳模型。 5. 特征工程:要求学生了解特征选择、降维等方法,并能够应用到实际问题中。 6. 深度学习基础知识:要求学生了解神经网络的基本结构和训练方法。 为了备考此次考试,学生可以通过以下几个途径: 1. 复习课堂笔记和教材:对机器学习的基本概念和常用算法进行系统复习。 2. 完成练习题和作业:通过做一些实际的练习题和作业,巩固对各种算法和方法的理解和应用。 3. 进行小组讨论和合作学习:与同学一起讨论复习问题,相互帮助解决难点。 4. 查阅相关文献和资料:阅读一些经典的机器学习论文和书籍,加深对机器学习理论的理解。 总的来说,mid机器学习2004年期中考试对于学生来说是一次全面评估机器学习知识和能力的机会。学生需要通过系统学习和刻苦复习,掌握机器学习的基本概念和常用算法,以便在考试中取得良好的成绩。 ### 回答3: MID是机器学习(Machine Learning)课程在2004年的期中考试机器学习是一门涉及计算机科学、统计学和人工智能等多个领域的学科,旨在让计算机系统通过学习和经验来改善性能,而不是通过明确编程。 在MID期中考试中,学生可能会收到一份试卷,其中包含与机器学习相关的问题和问题。这些问题可能涉及机器学习的基本概念、算法和应用。学生需要根据所学的知识和理解,以适当的方式回答这些问题。这可能包括定义术语、解释概念、说明算法的工作原理,者展示如何在特定情境中应用机器学习方法。 2004年是机器学习领域的一个重要时刻,当时该领域正处于蓬勃发展的阶段。在这个时期,学生可能会听到一些经典的机器学习算法和模型,如决策树、支持向量机和神经网络。此外,考试还可能涉及到机器学习的应用领域,如自然语言处理、图像识别和数据挖掘等。 参加MID期中考试的学生需要对机器学习的基本概念和原理有清晰的理解,并能灵活运用这些知识解决实际问题。通过这个考试,学生有机会展示他们对机器学习的理解和掌握程度,并且对未来的发展和研究方向有一个更好的认识。 最后,这个考试的目的是帮助学生巩固所学的机器学习知识,并为他们在未来的学习和职业发展中提供基础。通过这个考试,学生能够评估自己在机器学习中的能力,并为进一步学习和提高做好准备。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值