数学知识——求组合数

组合数

概念

  1. 定义:
    组合数公式是指从 n 个不同元素中,任取 m(m≤n) 个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合;从 n 个不同元素中取出 m(m≤n) 个元素的所有组合的个数,叫做 n 个不同元素中取出 m 个元素的组合数。用符号 C(n,m) 表示。
  2. 公式 :
    C n r = n ! r ! ∗ ( n − r ) ! = n ∗ ( n − 1 ) ∗ . . . . ∗ ( n − r + 1 ) r ! C_{n}^{r} = \frac{n!}{r! * (n- r)!} = \frac{n* (n - 1)*....*(n - r+ 1)}{r!} Cnr=r!(nr)!n!=r!n(n1)....(nr+1)

一般情况(无模数)

例题

输入 a , b ,求 C b a a,b,求 C_{b}^a a,b,求Cba 的值。
输入格式
共一行,包含两个整数 a 和 b。

输出格式
共一行,输出 C b a C_{b}^a Cba 的值。

数据范围
1≤b≤a≤5000
输入样例:
5 3
输出样例:
10

a, b = map(int, input().split())
j = a
res = 1
for i in range(1, b + 1) :
	res *= j
	res //= i
	j -= 1
print(res)

查询数目很大时,计算的组合数很小

C n m = C n − 1 m − 1 + C n − 1 m C_n^m = C_{n - 1}^{m - 1} + C_{n - 1}^{m} Cnm=Cn1m1+Cn1m

例题

给定 n 组询问,每组询问给定两个整数 a,b,请你输出 C b a m o d ( 1 0 9 + 7 ) C_b^amod(10^9+7) Cbamod(109+7) 的值。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一组 a 和 b。

输出格式
共 n 行,每行输出一个询问的解。

数据范围
1≤n≤10000,
1≤b≤a≤2000
输入样例:
3
3 1
5 3
2 2
输出样例:
3
10
1

N = 2010
MOD = int(1e9) + 7

C = [[0] * N for _ in range(N)]
def init() :
	for i in range(N) :
		for j in range(N) :
			if j == 0 :
				C[i][j] = 1
			else :
				C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD 
n = int(input())
init()
for i in range(n) :
	a, b = map(int, input().split())
	print(C[a][b])

查询数目相对较大,且计算的组合数较大

C n r = n ! r ! ∗ ( n − r ) ! C_{n}^{r} = \frac{n!}{r! * (n- r)!} Cnr=r!(nr)!n!

例题

给定 n 组询问,每组询问给定两个整数 a,b,请你输出 C b a m o d ( 1 0 9 + 7 ) C_b^amod(10^9+7) Cbamod(109+7) 的值。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一组 a 和 b。

输出格式
共 n 行,每行输出一个询问的解。

数据范围
1≤n≤10000,
1 ≤ b ≤ a ≤ 1 0 5 1≤b≤a≤10^5 1ba105
输入样例:
3
3 1
5 3
2 2
输出样例:
3
10
1

N = 100010
MOD = int(1e9) + 7

fact = [1] * N
infact = [1] * N

def qmi(a, k, p) :
	res = 1
	while k :
		if k & 1 :
			res = res * a % p
		k >>= 1
		a = a * a % p
	return res

def init() :
	for i in range(1, N) :
		fact[i] = fact[i - 1] * i % MOD
		infact[i] = infact[i - 1] * qmi(i, MOD - 2, MOD) % MOD
init()
n = int(input())
for i in range(n) :
	a, b = map(int, input().split())
	print(fact[a] * infact[b] % MOD * infact[a - b] % MOD)

查询数目很少,但计算组合数很大

卢卡斯定理

  1. 说明:
    L u c a s 定理是用来求 c ( n , m ) m o d p , p 为素数的值。 Lucas定理是用来求 c(n,m) mod p,p为素数的值。 Lucas定理是用来求c(n,m)modpp为素数的值。
    2.形式:
    当 n > p 或者 m > p 时使用: 当n > p或者m > p时使用 : n>p或者m>p时使用:
    C n m ≡ C n % p m % p ∗ C n / p m / p ( m o d   p ) C_n^m \equiv C_{n \% p}^{m \% p} * C_{n /p}^{m/p}(mod \ p) CnmCn%pm%pCn/pm/p(mod p)

例题

给定 n 组询问,每组询问给定三个整数 a,b,p,其中 p 是质数,请你输出 C b a m o d   p C_b^amod\ p Cbamod p 的值。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一组 a,b,p。

输出格式
共 n 行,每行输出一个询问的解。

数据范围
1≤n≤20,
1 ≤ b ≤ a ≤ 1 0 18 1≤b≤a≤10^{18} 1ba1018,
1≤p≤105,

输入样例:
3
5 3 7
3 1 5
6 4 13
输出样例:
3
3
2

def qmi(a, k, p) :
	res = 1
	while k :
		if k & 1 :
			res = res * a % p
		k >>= 1
		a = a * a % p
	return res

def C(a, b, p) :
	if b > a :
		return 0
	res = 1
	j = a
	for i in range(1, b + 1) :
		res = res * j % p
		res = res * qmi(i, p - 2, p) % p
	return res

def lucas(a, b, p) :###运用卢卡斯定理时,一定要保证a < p and b < p,不然可能会存在a或者b等于p的情况是结果出错
	if a < p and b < p :
		return C(a, b, p)
	return C(a % p, b % p, p) * lucas(a // p, b // p, p) % p
n = int(input())
for i in range(n) :
	a, b, p = map(int, input().split())
	print(lucas(a, b, p) % p)	

卡特兰数

在这里插入图片描述

  1. 公式:
    f ( n ) = C 2 n n − C 2 n n − 1 = C 2 n n / ( n + 1 ) f(n) = C_{2n}^{n} - C_{2n}^{n - 1} = C_{2n}^{n} / (n + 1) f(n)=C2nnC2nn1=C2nn/(n+1)
    说明:所有从(0, 0)抵达(n, n)的路径 - 一定经过红线的路径(对终点求关于红线的对称点)
例题

给定 n 个 0 和 n 个 1,它们将按照某种顺序排成长度为 2n 的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中 0 的个数都不少于 1 的个数的序列有多少个。

输出的答案对 1 0 9 + 7 10^9+7 109+7 取模。

输入格式
共一行,包含整数 n。

输出格式
共一行,包含一个整数,表示答案。

数据范围
1 ≤ n ≤ 1 0 5 1≤n≤10^5 1n105
输入样例:
3
输出样例:
5

MOD = int(1e9) + 7

n = int(input())

def qmi(a, k) :
    res = 1
    while k :
        if k & 1 :
            res = res * a % MOD
        a = a * a % MOD
        k >>= 1
    return res

def C(a, b) :
    if a < b :
        return 0
    res = 1
    j = a
    for i in range(1, b + 1) :
        res = res * j % MOD
        res = res * qmi(i, MOD - 2) % MOD
        j -= 1
    # for i in range(a, a - b, -1) : res = res * i % MOD
    # for i in range(1, b + 1) : res = res * qmi(i, MOD - 2) % MOD
    return res
        

a, b= 2 * n, n

print(C(a, b) * qmi(n + 1, MOD - 2) % MOD)
总结

组合数相对简单,但不同的输入范围我们要选取不同的方法,其中涉及了预处理,动态规划,快速幂,以及组合数定义与性质的一系列问题

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值