【算法】计算组合数的四种常用方法

【算法】计算组合数的四种常用方法

算法一: C a b = C a − 1 b − 1 + C a − 1 b C_{a}^{b}=C_{a-1}^{b-1}+C_{a-1}^{b} Cab=Ca1b1+Ca1b
解析:

C a b C_{a}^{b} Cab可以理解为从CSDN网站a位大佬中选出b位大佬的总方案数,a位大佬中选取b位大佬的总方案数有两种情况:

  • 情况一:选取“你”大佬;那么此时只需要从剩下的a-1位大佬中选出b-1位大佬
  • 情况二:不选取“你”大佬,那么此时从剩下的a-1位大佬中选出b位大佬

根据加法计数原理有: C a b = C a − 1 b − 1 + C a − 1 b C_{a}^{b}=C_{a-1}^{b-1}+C_{a-1}^{b} Cab=Ca1b1+Ca1b

时间复杂度为 O ( n 2 ) O(n^{2}) O(n2)

代码如下:
#include<iostream>
using namespace std;
const int mod = 1e9+7;
long long f[2010][2010];
int main()
{
    //预处理
    for(int i=0;i<=2000;i++)
    {
        for(int j=0;j<=i;j++)
        {
            if(!j) f[i][j]=1;
            else f[i][j]=(f[i-1][j-1]+f[i-1][j])%mod;
        }
    }
    int n;
    cin>>n;
    while(n--)
    {
        int a,b;
        cin>>a>>b;
        cout<<f[a][b]<<endl;
    }
}
算法二: C a b = a ! b ! ( a − b ) ! = a ! ∗ b ! − 1 ∗ ( a − b ) ! − 1 C_{a}^{b}={a!\over b!(a-b)!}=a!*b!^{-1}*(a-b)!^{-1} Cab=b!(ab)!a!=a!b!1(ab)!1
解析:

在这里插入图片描述

b ! − 1 b!^{-1} b!1 ( a − b ) ! − 1 (a-b)!^{-1} (ab)!1表示逆元,可以用快速幂算法求解

  • b ! − 1 = ( ( b − 1 ) ! b ) − 1 = ( b − 1 ) ! − 1 ∗ b − 1 b! ^{-1}=((b-1)!b)^{-1} = (b-1)!^{-1}*b^{-1} b!1=((b1)!b)1=(b1)!1b1
  • b − 1 = b 1 e 9 + 5 ( 根据费马小定理 ) b^{-1}=b^{1e9+5}(根据费马小定理) b1=b1e9+5(根据费马小定理)

由上两式得: b ! − 1 = ( b − 1 ) ! − 1 ∗ b 1 e 9 + 5 = ( b − 1 ) ! − 1 ∗ b m o d − 2 b!^{-1}=(b-1)!^{-1}*b^{1e9+5}=(b-1)!^{-1}*b^{mod-2} b!1=(b1)!1b1e9+5=(b1)!1bmod2

时间复杂度为 O ( a ∗ l o g ( m o d ) ) O(a*log(mod)) O(alog(mod))

代码如下:
#include<iostream>
using namespace std;
const int mod=1e9+7,N=1e5+10;
typedef long long LL;
long long fac[N];//存储数
long long infac[N];//存储逆元
//快速幂算法
int quick_pow(int a, int k, int p)
{
    int res = 1;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}
int main()
{
    int n;
    // 预处理
    fac[0]=infac[0]=1;
    for(int i=1;i<=1e5;i++)
    {
        fac[i]=fac[i-1]*i%mod;
        infac[i]=(LL)infac[i - 1] * quick_pow(i,mod-2,mod)%mod;
    }
    cin>>n;
    while(n--)
    {
        int a,b;
        cin>>a>>b;
        cout<<(LL)fac[a] * infac[b] % mod * infac[a - b] % mod<<endl;
    }
}
算法三:卢卡斯定理 C a b ( l u c a s ) ≡ C a p b p C a    m o d    p b    m o d    p ( m o d    p ) C_{a}^{b}(lucas)\equiv C_{a \over p}^{b\over p}C_{a\;mod\; p}^{b\; mod\; p}(mod\; p) Cab(lucas)CpapbCamodpbmodp(modp)
代码如下:
#include<iostream>
using namespace std;
typedef long long LL;
int quickPow(int a,int  b,int p)
{
    int t=1;
    while(b)
    {
        if(b&1) t=(LL)t*a%p;
        a=(LL)a*a%p;
        b>>=1;
    }
    return t;
}
int C(int a,int b,int p)
{
    if(b>a) return 0;
    int res=1;
    for(int i=a,j=1;j<=b;i--,j++)
    {
        res=(LL)res*i%p;//求a * (a-1) * .... * (a-b+1)
        cout<<i<<endl;
        res=(LL)res*quickPow(j,p-2,p)%p;//b的逆元
    }
    return res;
}
int lucas(LL a, LL b, int p)
{
    if (a < p && b < p) return C(a, b, p);
    return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}

int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        long long a,b,p;
        cin>>a>>b>>p;
        cout<<lucas(a,b,p)<<endl;
    }
}
算法四:高精度-素数组合
解析:

在这里插入图片描述

具体步骤:

  • 筛素数(1~5000)
  • 求每个质数的次数
  • 用高精度把所有质因子乘上
代码如下:
#include<iostream>
#include<algorithm>
#include<vector>

using namespace std;

const int N=5010;

int primes[N],cnt;
int sum[N];
bool st[N];

void get_primes(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i])primes[cnt++]=i;
        for(int j=0;primes[j]*i<=n;j++)
        {
            st[primes[j]*i]=true;
            if(i%primes[j]==0)break;//==0每次漏
        }
    }
}
// 对p的各个<=a的次数算整除下取整倍数
int get(int n,int p)
{
    int res =0;
    while(n)
    {
        res+=n/p;
        n/=p;
    }
    return res;
}
//高精度乘
vector<int> mul(vector<int> a, int b)
{
    vector<int> c;
    int t = 0;
    for (int i = 0; i < a.size(); i ++ )
    {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }
    while (t)
    {
        c.push_back(t % 10);
        t /= 10;
    }
    // while(C.size()>1 && C.back()==0) C.pop_back();//考虑b==0时才有pop多余的0 b!=0不需要这行
    return c;
}

int main()
{
    int a,b;
    cin >> a >> b;
    get_primes(a);

    for(int i=0;i<cnt;i++)
    {
        int p = primes[i];
        sum[i] = get(a,p)-get(a-b,p)-get(b,p);//是a-b不是b-a
    }

    vector<int> res;
    res.push_back(1);

    for (int i = 0; i < cnt; i ++ )
        for (int j = 0; j < sum[i]; j ++ )//primes[i]的次数
            res = mul(res, primes[i]);

    for (int i = res.size() - 1; i >= 0; i -- )cout<<res[i]<<" ";
    return 0;
}
  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值