软考数据库第十四章数据库主流应用技术

本文介绍了分布式数据库的概念,强调其分布性、逻辑相关性、场地透明性和场地自治性特点。此外,文章还对比了OLAP(联机分析处理)和OLTP(联机事务处理)的差异,OLAP适用于多维度分析,而OLTP专注于事务处理。通过实例展示了分布式数据库在数据冗余和存取效率方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

软考数据库第十四章数据库主流应用技术

笔记

14 数据库主流应用技术

主要考点
在这里插入图片描述

分布式数据库的概念
  • 分布式数据库系统是数据库系统和计算机网络相结合的产物。

  • 要使数据库系统能够正常运行,必须制订运行策略,运行策略的制订要从两个方面考虑:正常运行策略和非正常运行策略。**正常运行策略分布式数据库系统(DistributedDatabaseSystem,DDBS)**是面向地理上分散,而管理上又需要不同程度集中管理的需求而提出的一种数据管理信息系统。

在这里插入图片描述

可以看出,分布式数据库系统首先是由多个不同节点或场地的数据库系统通过网络连接而成的(如不加特别说明,本章中的场地和节点表示同一含义),每个节点都有各自的数据库管理系统(Local Database Management System,LDBMS),同时还有全局数据库管理系统(GlobalDatabase Management System,GDBMS)。图14-1中的局部用户是针对某一个节点而言的,局部用户只关心他所访问的节点上的数据,而全局用户则可能需要访问多个节点上的数据。每个节点的LDBMS完成对局部用户的应用请求,GDBMS则为全局用户提供服务。我们还可以看出,全局用户可以从任意一个节点访问分布式数据库系统中的数据。

满足下面条件的数据库系统被称为完全分布式数据库系统:

(1)分布性:即数据存储在多个不同的节点上。

(2)逻辑相关性:即数据库系统内的数据在逻辑上具有相互关联的特性。

(3)场地透明性:即使用分布式数据库中的数据时不需指明数据所在的位置。

(4)场地自治性:即每一个单独的节点能够执行局部的应用请求。

分布式数据库的特点
  1. 数据的集中控制性:介绍了数据库是随着信息系统的演变而发展的,传统数据库系统具有集中控制特性,分布式数据库系统是其新发展。
  2. 数据独立性:阐述了集中式数据库具有数据独立性,分布式数据库同样重要,且有分布式透明的含义。
  3. 数据冗余可控性:说明了数据库系统要尽量减少数据冗余,但分布式数据库可在系统控制下存储冗余数据以节省传输开销等。
  4. 场地自治性:描述了分布式数据库系统中存在全局应用和局部应用,局部应用具有自治性。
  5. 存取的有效性:指出传统数据库系统采用复杂存储结构提高存取效率,而分布式数据库系统的查询优化有全局和局部两个级别。
OLAP和OLTP对比
OLTPOLAP
数据库原始数据数据库导出数据或数据仓库数据
细节性数据综合性数据
当前数据历史数据
经常更新不可更新,但周期性更新
一次性处理的数据量少一次性处理的数据量大
响应时间要求高响应时间合理
用户数量大用户数量相对较少
面向操作人员,支持日常操作面向决策人员。支持管理需要
面向应用,事务驱动面向分析,分析驱动

题目

14数据库主流应用技术

1、13年第64题

从时间、地区和商品种类三个维度来分析某电器商品销售数据属于()。

A.ETLB.联机事务处理(OLTP)C.联机分析处理(OLAP)D.数据挖掘

【解析】C
OLAP 是一种针对大规模数据进行多维分析的技术。从时间、地区和商品种类三个维度来分析某电器商品销售数据,正是典型的多维分析场景。
具体来说:
时间维度:可以分析不同时间段的销售趋势、季节性变化等。
地区维度:有助于了解不同地区的销售情况,发现区域差异。
商品种类维度:可以分析各类电器产品的销售表现。
OLAP 允许用户灵活地从多个维度对数据进行切块、切片、钻取等操作,以获取深入的见解。
ETL(A 选项)主要涉及数据的提取、转换和加载过程,是数据处理的一个环节。
联机事务处理(OLTP)(B 选项)主要处理实时的事务操作。
数据挖掘(D 选项)则更侧重于发现隐藏在数据中的模式和规律。

2、13年第65题

在面向对象数据库系统的数据类型中,对象属于()类型。

A.基本B.复杂C.引用D.其他

【解析】B.复杂。
在面向对象数据库系统中,对象是一种复杂的数据类型。
对象具有以下特点:
封装性:包含属性和方法,将相关的数据和操作封装在一起。
继承性:可以继承其他对象的属性和方法。
多态性:不同对象在执行相同操作时可能表现出不同的行为。
相比于基本数据类型,对象具有更丰富的结构和行为,能够更好地描述现实世界中的实体。
而引用类型通常用于表示对象之间的关系。

3、14年第62题

分布式数据库系统除了包含集中式数据库系统的模式结构之外,还增加了几个模式级别,其中()定义分布式数据库中数据的整体逻辑结构,使得数据如同没有分布一样。

A.全局外模式B.全局概念模式C.分片D.分布

【解析】B.全局概念模式。
全局概念模式定义了分布式数据库中数据的整体逻辑结构,使得数据看起来就像没有分布一样。
全局外模式是用户看到的局部数据视图。
分片是将数据分割成多个部分,分布到不同的节点。
分布则是指数据在不同节点上的存储和管理方式。
全局概念模式提供了一个统一的视图,隐藏了数据的分布细节,使用户可以像处理集中式数据库一样操作分布式数据库。
它对用户屏蔽了数据的分布情况,使得用户无需关心数据的具体分布位置和方式。

4、14年第63题

以下关于面向对象数据库的叙述中,不正确的是()。

A.类之间可以具有层次结构

B.类内部可以具有有嵌套层次结构

C.类的属性不能是类

D.类包含属性和方法

【解析】C
在面向对象数据库中,类的属性可以是其他类。
这种特性允许类之间的复杂关系和层次结构的建立。
类之间可以具有层次结构(A 选项正确),形成类的继承关系。
类内部也可以具有嵌套层次结构(B 选项正确),以更好地组织和封装相关属性和方法。
类通常包含属性和方法(D 选项正确),属性描述对象的特征,方法定义对象的行为。
而属性可以是其他类的实例,从而实现更灵活和可扩展的数据模型。

5、14年第64题

以下关于数据仓库的叙述中,不正确的是()。

A.数据仓库是商业智能系统的基础

B.数据仓库是面向业务的,支持联机事务处理(OLTP)

C.数据仓库是面向分析的,支持联机分析处理(OLAP)

D.数据仓库中的数据视图往往是多维的

【解析】B

数据仓库主要用于支持联机分析处理(OLAP),而不是联机事务处理(OLTP)。

数据仓库的主要特点包括:

  • 数据仓库是商业智能系统的基础,为决策支持提供数据支持(A 选项正确)。
  • 它是面向分析的,用于数据分析和决策支持(C 选项正确)。
  • 数据仓库中的数据视图常常是多维的,方便进行多角度的分析(D 选项正确)。

而联机事务处理(OLTP)通常需要快速响应和处理实时的交易事务,数据仓库则更侧重于大量数据的存储、管理和分析。

6、15年第62题

以下关于面向对象数据库的叙述中,不正确的是()。

A.类是一组具有相同或相似性质的对象的抽象。一个对象是某一类的一个实例

B.类的属性可以是基本类,如整数、字符串等,也可以是包含属性和方法的一般类

C.类的某个属性的定义可以是该类自身

D.一个对象通常对应实际领域的一个实体,有唯一的标识,即对象标识OID,用户可以修改OID

【解析】D

在面向对象数据库中,对象标识 OID 通常是由系统自动分配的,用于唯一标识每个对象。用户一般不能直接修改 OID,因为它是对象的唯一标识符,对于系统的正常运行和数据管理具有重要意义。

A. 类是对象的抽象,一个对象是类的具体实例,这是面向对象编程的基本概念之一。

B. 类的属性可以是基本类型,也可以是其他类。

C. 类的某个属性的定义可以是该类自身,这种情况称为自引用。

7、16年第62题

全局概念层是分布式数据库的整体抽象,包含了系统中全部数据的特性和逻辑结构,从其分布透明特性来说,包含的三种模式描述信息中不包括()模式。

A.全局概念B.分片C.分配D.访问

【解析】D

全局概念层包含了全局概念模式、分片模式和分配模式等三种模式描述信息。
全局概念模式定义了分布式数据库中数据的整体逻辑结构。
分片模式描述了数据如何分割到不同的节点。
分配模式描述了分片如何分布到不同的节点。
而访问模式并不属于全局概念层的模式描述信息。
访问模式通常涉及到具体的访问方式和策略,可能在数据库的访问控制、查询优化等方面起作用,但它不是全局概念层所包含的模式。

8、17年第62题

以下是平行数据库的四种体系结构,在()体系结构中所有处理器共享一个公共的主存储器和磁盘。

A.共享内存B.共享磁盘C.无共享D.层次

【解析】A

9、17年第63题

数据仓库中的数据组织是基于()模型的。

A.网状B.层次C.关系D.多维

【解析】D

数据仓库中的数据组织通常是基于多维模型的。
多维模型具有以下特点:
多维度:数据按照多个维度进行组织和存储。
快速分析:支持高效的分析和查询操作。
汇总和聚合:便于进行数据的汇总和聚合。
可视化展示:适合构建直观的报表和可视化分析。
关系模型常用于传统的数据库系统。
层次模型和网状模型在现代数据仓库中使用较少。
多维模型能够更好地支持决策支持和数据分析的需求,提供了一种直观、高效的数据组织方式。

10、18年第68题

()不是分布式数据库管理系统应该遵循的准则。

A.本地自治B.依赖中心结点C.分片透明D.位置透明

【解析】B

在分布式数据库管理系统中,通常遵循以下准则:

  • 本地自治:每个节点具有一定的自治性,可以独立地管理本地数据。
  • 分片透明:用户无需关心数据的分片情况。
  • 位置透明:用户不需要知道数据存储的具体位置。

而依赖中心结点不符合分布式系统的设计理念,分布式系统的优点之一就是通过多个节点的协同工作来提高可靠性和可用性,而不是依赖于一个中心结点。

如果存在中心结点,那么系统的可靠性和容错性就会受到中心结点的影响。

11、18年第69题

E-R图中的实体集A、B之前为1:*联系,转换为关系模型时,在B实体集中增加A实体集的标识符作外码;而在面向对象数据模型中,()。

A.在B对象中增加一个引用属性外,对A对象不作任何处理

B.在B对象中增加一个引用属性外,在A对象中增加一组引用属性

C.在A对象中增加一组引用属性外,对B对象不作任何处理

D.在A对象中增加一组引用属性外,在B对象中增加一组引用属性

【解析】B

12、20年第63~64题

OLTP指的是(),OLAP指的是()。

(63)A.联机事务处理B.联机分析处理C实时事务处理D批量事务处理

(64)A.联机事务处理B.联机分析处理C.实时事务处理D批量事务处理

【解析】AB

(63)A.联机事务处理。

OLTP(Online Transaction Processing)即联机事务处理,主要处理日常的事务操作,例如银行交易、订单处理等。

(64)B.联机分析处理。

OLAP(Online Analytical Processing)即联机分析处理,侧重于对大量数据进行分析和查询,以支持决策制定。

OLTP 通常具有以下特点:

  1. 短交易时间:每个事务的处理时间较短。
  2. 高并发性:同时处理大量的并发事务。
  3. 数据量相对较小。

OLAP 则具有以下特点:

  1. 复杂的分析查询:支持多维度的分析和汇总。
  2. 大量数据:处理大规模的数据集。
  3. 对实时性要求相对较低。

13、20年第68题

下列描述中,()不是分布式数据库数据透明性的表现形式。

A.代码透明性B.分片透明性C位置透明性D模型透明性

【解析】A

14、21年第68题

下列选项中,()不属于分布式数据库的优点。

A.可拓展性好B.具有数据分布透明性C.体系结构灵活D.存取结构简单

【解析】D

分布式数据库具有以下优点:
可扩展性好:可以容易地增加节点来处理更多的数据和负载。
具有数据分布透明性:使用户无需关心数据的分布情况。
体系结构灵活:能够适应不同的应用需求和工作环境。

15、21年第70题

分布式数据库CAP理论中的A指的是()。

A.一致性B.可用性C分区容错D.原子性

【解析】B

一致性(Consistency)、可用性(Availability)和分区容错性(Partition Tolerance)

16、22年第68题

数据仓库是为了构建新的分析处理环境而出现的一种数据存储和组织技术,其特征不包括()。

A.数据的组织面向主题

B.数据是集成的

C.数据是相对不稳定的

D.数据是反映历史变化的

【解析】C

数据仓库的特征包括:
数据的组织面向主题:按照主题进行组织。
数据是集成的:消除了数据的不一致性和冗余。
数据是稳定的:通常用于支持决策,数据相对稳定。
数据是反映历史变化的:包含历史数据。

17、22年第69题

相比于集中式数据库,分布式数据库具有()的优点。

A.成本低B.结构简单C.拓展性强D.数据冗余低

【解析】C

相比于集中式数据库,分布式数据库具有以下优点:
拓展性强:能够轻松地扩展存储和处理能力。
高可用性:通过多个节点提供服务,容错性更好。
性能提升:可以并行处理数据,提高查询性能。
灵活性高:适应不同的业务需求和工作环境

18、22年第70题

以下关于MapReduce技术的说法中,不正确的是()。

A.MapReduce的计算过程分解为两个主要阶段:Map阶段和Reduce阶段

B.用户无需编写Map函数和Reduce函数

C.MapReduce中存在据chuck的复制

D.在同等硬件条件下,MapReduce的性能一般低于并行数据库

【解析】B

MapReduce 是一种分布式计算框架,它将计算任务分解为 Map 阶段和 Reduce 阶段。
用户需要根据自己的业务逻辑编写 Map 函数和 Reduce 函数,Map 函数用于处理输入数据并生成中间结果,Reduce 函数用于对中间结果进行汇总和处理。
MapReduce 中存在数据块(chunk)的复制,以支持分布式计算。
在同等硬件条件下,MapReduce 的性能与并行数据库的性能可能受到多种因素的影响,不能简单地说 MapReduce 的性能一定低于并行数据库。
具体的性能取决于具体的应用场景、数据特点、算法优化等因素。

19、23年第69题

分布式数据库的设计主要考虑数据分布的设计,数据分布主要目的是提高访问的(),即通过数据的合理分布,尽可能使更多的数据能够就地存放,以减少远距离的数据访问。

A.局部性B.全局性C重构性D.完整性

【解析】A

数据分布的主要目的是提高访问的局部性。局部性是指访问的数据尽量在本地或相近的节点上,避免远程数据访问。
通过合理的数据分布,可以减少数据在网络上的传输,提高系统的性能和响应速度。
局部性的优点包括:
降低网络延迟和带宽消耗。
提高数据访问的效率和速度。
增强系统的可扩展性和容错性。
全局性、重构性和完整性并非数据分布的主要目的。
全局性更侧重于整体的数据管理和规划。
重构性通常与系统的架构和调整相关。
性能取决于具体的应用场景、数据特点、算法优化等因素。

19、23年第69题

分布式数据库的设计主要考虑数据分布的设计,数据分布主要目的是提高访问的(),即通过数据的合理分布,尽可能使更多的数据能够就地存放,以减少远距离的数据访问。

A.局部性B.全局性C重构性D.完整性

【解析】A

数据分布的主要目的是提高访问的局部性。局部性是指访问的数据尽量在本地或相近的节点上,避免远程数据访问。
通过合理的数据分布,可以减少数据在网络上的传输,提高系统的性能和响应速度。
局部性的优点包括:
降低网络延迟和带宽消耗。
提高数据访问的效率和速度。
增强系统的可扩展性和容错性。
全局性、重构性和完整性并非数据分布的主要目的。
全局性更侧重于整体的数据管理和规划。
重构性通常与系统的架构和调整相关。
完整性则强调数据的准确性和完整性约束。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值