💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于哈里斯鹰优化算法(HHO)优化CNN-BiGRU-Attention风电功率预测研究是一个结合了新型元启发式优化算法与深度学习技术的创新课题。以下是对该研究的详细分析:
一、研究背景与意义
风能作为一种清洁、可再生的能源,其开发和利用对于缓解能源危机、减少环境污染具有重要意义。然而,风电功率的间歇性和波动性给电网的稳定运行带来了挑战。准确预测风电功率不仅有助于提高电网调度效率、降低运营成本,还能保障能源安全。因此,研究风电功率预测技术具有重要的现实意义。
二、技术概述
1. 哈里斯鹰优化算法(HHO)
HHO算法是一种基于自然启发的新型元启发式优化算法,由Heidari等人于2019年提出。该算法模拟了哈里斯鹰在捕食猎物过程中的合作行为以及突然袭击的狩猎风格,通过迭代搜索来优化模型参数。HHO算法具有需调参数少、原理简单易实现、局部搜索能力强等优点,在数值和工程优化等领域得到了广泛应用。
2. 卷积神经网络(CNN)
CNN是一种具有层次结构的神经网络,擅长提取图像和时间序列数据中的特征。在风电功率预测中,CNN可以提取气象数据(如风速、风向、温度等)中的时间特征,为预测模型提供关键信息。
3. 双向门控循环单元(BiGRU)
BiGRU是一种双向的门控循环单元,它结合了前向GRU和后向GRU的优势,能够同时捕捉时间序列数据中的前向和后向依赖关系。在风电功率预测中,BiGRU可以利用历史风电功率数据和未来气象数据的预测信息,提高预测的准确性。
4. 注意力机制(Attention)
注意力机制赋予模型在处理输入序列时可以选择性地关注某些部分的能力,提高了模型对重要信息的敏感度。在风电功率预测中,注意力机制可以识别出对风电功率预测影响较大的气象特征,如强风、风向突变等,从而进一步提高预测精度。
三、研究内容与方法
本研究将HHO算法应用于CNN-BiGRU-Attention风电功率预测模型中,具体研究内容和方法包括:
-
数据准备与预处理:收集风电场的气象数据和历史风电功率数据,并进行数据清洗、缺失值处理、异常值处理等预处理工作。
-
模型构建:构建基于CNN-BiGRU-Attention的风电功率预测模型,其中CNN用于提取气象数据的时间特征,BiGRU用于学习时间序列数据中的长期依赖关系,并考虑未来信息的预测,注意力机制用于突出重要特征信息。
-
参数优化:利用HHO算法对CNN-BiGRU-Attention模型的参数进行优化。在HHO算法中,哈里斯鹰的位置被当作为候选解,迭代的最佳候选解为猎物。通过探索阶段、探索与开发转换阶段和开发阶段三个阶段的迭代搜索,找到最优的模型参数组合。
-
模型训练与评估:使用训练集对模型进行训练,并通过测试集评估模型的预测性能。评估指标可以包括均方根误差(RMSE)、平均绝对误差(MAE)、均方误差(MSE)等。同时,还可以将HHO-CNN-BiGRU-Attention模型的预测结果与其他预测方法(如传统统计模型、物理模型、未优化的深度学习模型等)进行对比分析,以验证其优越性。
四、预期成果与贡献
本研究预期能够提出一种基于HHO算法优化的CNN-BiGRU-Attention风电功率预测方法,该方法在预测精度和稳定性方面将优于传统的预测方法。具体贡献包括:
-
提高预测精度:通过结合HHO算法的优化能力和CNN-BiGRU-Attention模型的深度学习能力,提高风电功率预测的准确性和稳定性。
-
优化模型参数:利用HHO算法对模型参数进行优化,进一步提高模型的预测性能。
-
拓展应用领域:该方法不仅适用于风电功率预测,还可以拓展到其他时间序列预测领域,如光伏发电预测、负荷预测等。
五、结论与展望
本研究基于HHO算法优化CNN-BiGRU-Attention风电功率预测模型,为风电功率预测提供了一种新的思路和方法。未来研究可以进一步探索其他优化算法和深度学习模型在风电功率预测中的应用,以及如何将多种预测方法进行有效融合,以进一步提高预测性能。同时,还可以考虑将预测结果应用于电网调度、风电场运维等实际场景中,实现预测与决策的一体化。
📚2 运行结果
部分代码:
% 指标计算
disp('…………训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_train1,T_sim1);
fprintf('\n')
figure('Position',[200,300,600,200])
plot(T_train1);
hold on
plot(T_sim1)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION训练集预测效果对比')
xlabel('样本点')
ylabel('发电功率')
disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test2,T_sim2);
fprintf('\n')
figure('Position',[200,300,600,200])
plot(T_test2);
hold on
plot(T_sim2)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION预测集预测效果对比')
xlabel('样本点')
ylabel('发电功率')
figure('Position',[200,300,600,200])
plot(T_sim2-T_test2)
title('CNN-BiGRU-ATTENTION误差曲线图')
xlabel('样本点')
ylabel('发电功率')
%% 优化CNN-BiGRU-Attention
disp(' ')
disp('优化CNN_BiLSTM_attention神经网络:')
%% 初始化参数
popsize=10; %初始种群规模
maxgen=8; %最大进化代数
fobj = @(x)objectiveFunction(x,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
% 优化参数设置
lb = [0.001 10 2 2]; %参数的下限。分别是学习率,biGRU的神经元个数,注意力机制的键值, 卷积核大小
ub = [0.01 50 50 10]; %参数的上限
dim = length(lb);%数量
% 可选:'DBO','GWO','OOA','PSO','SABO','SCSO','SSA','BWO','RIME','WOA','HHO','NGO';
[Best_score,Best_pos,curve]=NGO(popsize,maxgen,lb,ub,dim,fobj); %修改这里的函数名字即可
setdemorandstream(pi);
%% 绘制进化曲线
figure
plot(curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')
%% 把最佳参数Best_pos回带
[~,optimize_T_sim] = objectiveFunction(Best_pos,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
setdemorandstream(pi);
%% 比较算法预测值
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
figure('Units', 'pixels', ...
'Position', [300 300 860 370]);
plot(T_test,'-','Color',[0.8500 0.3250 0.0980])
hold on
plot(T_sim2,'-.','Color',[0.4940 0.1840 0.5560])
hold on
plot(optimize_T_sim,'-','Color',[0.4660 0.6740 0.1880])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off
%% 比较算法误差
test_y = T_test;
Test_all = [];
y_test_predict = T_sim2;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
y_test_predict = optimize_T_sim;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)
%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color= [0.66669 0.1206 0.108
0.1339 0.7882 0.8588
0.1525 0.6645 0.1290
0.8549 0.9373 0.8275
0.1551 0.2176 0.8627
0.7843 0.1412 0.1373
0.2000 0.9213 0.8176
0.5569 0.8118 0.7882
1.0000 0.5333 0.5176];
figure('Units', 'pixels', ...
'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on
for i = 1 : size(plot_data_t,2)
x_data(:, i) = b(i).XEndPoints';
end
for i =1:size(plot_data_t,2)
b(i).FaceColor = color(i,:);
b(i).EdgeColor=[0.3353 0.3314 0.6431];
b(i).LineWidth=1.2;
end
for i = 1 : size(plot_data_t,1)-1
xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
b1=xline(xilnk,'--','LineWidth',1.2);
hold on
end
ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.
[2]李卓,叶林,戴斌华,等.基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术, 2022(6):2117-2127.
[3]贾睿,杨国华,郑豪丰,等.基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J].中国电力, 2022, 55(5):47-56.DOI:10.11930/j.issn.1004-9649.202104023.
[4]李艳、彭春华、傅裕、孙惠娟.基于CNN-LSTM网络模型的风电功率短期预测研究[J].华东交通大学学报, 2020, 37(4):7.DOI:CNKI:SUN:HDJT.0.2020-04-017.
[5]张子华,李琰,徐天奇,等.基于VMD-CNN-LSTM的短期风电功率预测研究[J].云南民族大学学报:自然科学版, 2023.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取