【多变量输入单步预测】基于鱼鹰优化算法(OOA)优化CNN-BiLSTM-Attention的风电功率预测研究(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、技术原理与模型结构

1. 鱼鹰优化算法(OOA)

2. CNN-BiLSTM-Attention模型

三、研究内容与方法

1. 数据预处理

2. 模型构建

3. 参数优化

4. 模型训练与评估

四、实验结果与分析

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于鱼鹰优化算法(OOA)优化CNN-BiLSTM-Attention的风电功率预测研究是一个结合了多种先进技术的复杂课题,旨在通过优化深度学习模型的参数配置,提升风电功率预测的准确性。以下是对该研究的详细探讨:

一、研究背景与意义

风电作为一种清洁、可再生的能源,其开发和利用对于缓解能源危机、减少环境污染具有重要意义。然而,风电功率的波动性给电力系统的稳定运行带来了挑战,因此,准确预测风电功率成为了一个重要的研究方向。基于鱼鹰优化算法(OOA)优化CNN-BiLSTM-Attention模型的风电功率预测方法,旨在通过优化模型参数,提高预测精度,为电力系统的调度和管理提供可靠依据。

二、技术原理与模型结构

1. 鱼鹰优化算法(OOA)

鱼鹰优化算法(OOA)是一种新型的元启发式优化算法,灵感来源于鱼鹰捕食行为中的智能搜索策略。该算法通过模拟鱼鹰的飞行模式、捕食策略和领域感知能力,在搜索空间中有效地找到全局最优解。OOA具有全局搜索能力强、收敛速度快、参数少等优点,适用于解决复杂的优化问题。

2. CNN-BiLSTM-Attention模型

CNN-BiLSTM-Attention模型结合了卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)的优点,形成了一个强大的深度学习架构。其中,CNN用于提取风电功率数据的空间特征,BiLSTM用于捕获时间序列数据中的长期依赖关系,而Attention机制则用于识别关键特征,提高模型的预测精度。

三、研究内容与方法

1. 数据预处理

对风电功率数据进行预处理,包括数据清洗、归一化等操作,以确保数据的质量和一致性。

2. 模型构建

构建CNN-BiLSTM-Attention模型,并设置初始参数。其中,CNN层用于提取输入数据的空间特征,BiLSTM层用于捕获时间序列数据中的长期依赖关系,Attention层用于识别关键特征。

3. 参数优化

利用鱼鹰优化算法(OOA)对CNN-BiLSTM-Attention模型的参数进行优化。通过模拟鱼鹰的捕食行为,在搜索空间中不断调整模型参数,以找到最优解。

4. 模型训练与评估

使用预处理后的风电功率数据对模型进行训练,并通过评价指标(如均方误差MSE、均方根误差RMSE、平均绝对误差MAE等)对模型的预测性能进行评估。

四、实验结果与分析

实验结果表明,基于鱼鹰优化算法(OOA)优化CNN-BiLSTM-Attention模型的风电功率预测方法在不同数据集上均表现出优异的预测性能。相比于传统方法和未优化的深度学习模型,该方法在预测精度和稳定性方面均有显著提升。

五、结论与展望

本研究提出了一种基于鱼鹰优化算法(OOA)优化CNN-BiLSTM-Attention模型的风电功率预测方法,并通过实验验证了其有效性。未来研究可以进一步探索更加有效的特征提取方法和优化算法,以进一步提升风电功率预测的精度和稳定性。同时,还可以将该方法应用于其他领域的时间序列预测问题中,以拓展其应用范围和价值。

📚2 运行结果

采用前10个样本的所有特征,去预测下一个样本的发电功率。

部分代码:


layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    bilstmLayer(25,'Outputmode','last','name','hidden1') 
    selfAttentionLayer(1,2)          %创建一个单头,2个键和查询通道的自注意力层  
    dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.

[2]王彦快,孟佳东,张玉,等.基于GADF与2D CNN-改进SVM的道岔故障诊断方法研究[J].铁道科学与工程学报, 2024, 21(7).

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011, 35(12):20-26.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值