根据书生大模型训练营的四期:Tutorial/docs/L1/LlamaIndex/readme_api.md at camp4 · InternLM/Tutorial
1.首先,什么是RAG?
正式介绍检索增强生成(Retrieval Augmented Generation,RAG)技术以前,大家不妨想想为什么会出现这样一个技术。 给模型注入新知识的方式,可以简单分为两种方式,一种是内部的,即更新模型的权重,另一个就是外部的方式,给模型注入格外的上下文或者说外部信息,不改变它的的权重。 第一种方式,改变了模型的权重即进行模型训练,这是一件代价比较大的事情,大语言模型具体的训练过程,可以参考InternLM2技术报告。第二种方式,并不改变模型的权重,只是给模型引入格外的信息。类比人类编程的过程,第一种方式相当于你记住了某个函数的用法,第二种方式相当于你阅读函数文档然后短暂的记住了某个函数的用法。

简单来说,当你询问大模型一个问题的时候,若该问题对于大模型来说是一个新的知识时,其实大模型此时要么去根据自己的数据库(语料库)的知识中胡乱回答,要么就会使用RAG(检索增强生成)去根据一个短暂的信息上下文能够去回答该问题;另外一种办法就是重新模型训练,代价较大。
对比两种注入知识方式,第二种更容易实现。RAG正是这种方式。它能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。本次课程选用了LlamaIndex框架。LlamaIndex 是一个上下文增强的 LLM 框架,旨在通过将其与特定上下文数据集集成,增强大型语言模型(LLMs)的能力。它允许您构建应用程序,既利用 LLMs 的优势,又融入您的私有或领域特定信息。
2.实践运用RAG,通过调用API
首先需要用vscode连接服务器,这里遇到了一个问题,新建立的开发机,进行ssh远程连接的时候,跳过了密码输入过程导致了连接失败,因为之前创建了一个rsa密钥,所有连接时可能自动验证密钥,但是开发机对应不上,所以我在新建立的开发机中创建了一个公钥,这样就重新连接上去了。

创建一个llamaindex的环境,python等于3.10,这里的cuda是12.1。下面就是重新配置环境。
pip install einops==0.7.0 protobuf==5.26.1
pip install llama-index==0.11.20
pip install llama-index-llms-replicate==0.3.0
pip install llama-index-llms-openai-like==0.2.0
pip install llama-index-embeddings-huggingface==0.3.1
pip install llama-index-embeddings-instructor==0.2.1
pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu121
下载Sentence Transformer模型:
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
打开download_hf.py 贴入以下代码
import os
# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
然后,在 /root/llamaindex_demo 目录下执行该脚本即可自动开始下载:
cd /root/llamaindex_demo conda activate llamaindex python download_hf.py
更多关于镜像使用可以移步至 HF Mirror 查看。
推荐用户从modelscope下载
2.4 下载 NLTK 相关资源
我们在使用开源词向量模型构建开源词向量的时候,需要用到第三方库 nltk 的一些资源。正常情况下,其会自动从互联网上下载,但可能由于网络原因会导致下载中断,此处我们可以从国内仓库镜像地址下载相关资源,保存到服务器上。 我们用以下命令下载 nltk 资源并解压到服务器上:
cd /root git clone https://gitee.com/yzy0612/nltk_data.git --branch gh-pages cd nltk_data mv packages/* ./ cd tokenizers unzip punkt.zip cd ../taggers unzip averaged_perceptron_tagger.zip
之后使用时服务器即会自动使用已有资源,无需再次下载


本地部署InterLM实践



288

被折叠的 条评论
为什么被折叠?



