机器视觉应用案例|如何开发医用纱布外观检测的视觉AI模型

PART 01 检测难点

医用纱布是医疗领域重要的基础物资,生产工艺复杂,广泛用于外伤手术、伤口包扎等医疗场景,其生产过程中往往会出现断线、打结、脏污等情况,为了保障使用者的康复进程和健康安全,纱布在出厂前必须经过严格的质量检测。

图片

依靠人工肉眼检查的方式难免受到观察者主观判断的影响,检测过程中可能会出现偶然误差,加之效率低下,难以适应现代医疗用品生产的高标准与大规模需求。

PART 02 解决方案

利用人工智能技术可以完美解决此类问题,采用森赛睿视觉AI云服务平台对医用纱布瑕疵样本的图像数据进行训练并生成检测模型,再通过检测模型的使用代替人工来完成自动化视觉检测。

数据收集与标注

建立模型的第一步是收集存在外观瑕疵纱布的图像数据,再将这些图像数据上传至森赛睿视觉AI云服务平台,通过AI平台对各类瑕疵进行标注。标注图像是一项关键的步骤,目的是为AI算法提供明确的指示,使其可以高精度识别不同类型的瑕疵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值