第48期:图论-最短路-Dijkstra算法

参考:

Bellman-ford算法详解——负权环分析_anlian523的博客-CSDN博客_bellman-ford​​​​​​

最短路径问题---Dijkstra算法详解_William-CSDN博客_dijkstra

最短路径问题---Floyd算法详解_William-CSDN博客_floyd算法

最短路径问题---SPFA算法详解_William-CSDN博客_spfa算法

单源最短路径 - 题解 - 洛谷

Dijkstra算法

适合稠密图;只适用于不含负权边的图;时间复杂度上限为O(n^{2})(朴素);加上堆优化之后更是具有O((n+m)\log_{2}n)的时间复杂度。

1.【模板】单源最短路径(标准版) - 洛谷 

Dijkstra堆优化

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10,maxm=5e5+10,INF=INT_MAX;

struct edge{
	int to,dis,next;
}; 
edge e[maxm];
int head[maxn],dis[maxn],cnt;
bool vis[maxn];
int n,m,s;

inline void add_edge(int u,int v,int d){
	cnt++;
	e[cnt].dis=d;
	e[cnt].to=v;
	e[cnt].next=head[u];
	head[u]=cnt;
}

struct node{
	int dis;
	int pos;
	bool operator < (const node &x) const{
		return x.dis<dis;
	}
};

priority_queue<node> q;

inline void dijkstra(){
	dis[s]=0;
	q.push((node){0,s});
	while(q.size()){
		node tmp=q.top(); q.pop();
		int x=tmp.pos,d=tmp.dis;
		if(vis[x]) continue;
		vis[x]=1;
		for(int i=head[x];i;i=e[i].next){
			int y=e[i].to;
			if(dis[y]>dis[x]+e[i].dis){
				dis[y]=dis[x]+e[i].dis;
				if(!vis[y]){
					q.push((node){dis[y],y});
				}
			}
		}
	}
}

int main(){
	cin>>n>>m>>s;
	for(int i=1;i<=n;++i) dis[i]=INF;
	for(int i=0;i<m;++i){
		int u,v,d; cin>>u>>v>>d;
		add_edge(u,v,d);
	}
	dijkstra();
	for(int i=1;i<=n;i++) cout<<dis[i]<<" ";
	return 0;
}

Dijkstra  一般线段树优化

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10,maxm=2e5+10,INF=0x3f3f3f3f;

int n,m,s;
struct edge{
	int v,w,next;
}e[maxm];
int head[maxn];

void addEdge(int u,int v,int w){
	static int cnt=0;
	e[++cnt]=(edge){v,w,head[u]};
	head[u]=cnt;
}
#define ls (o<<1)
#define rs (o<<1|1)
int minv[maxn<<2],minp[maxn<<2];

void pushup(int o){
	if(minv[ls]<=minv[rs]) minv[o]=minv[ls],minp[o]=minp[ls];
	else minv[o]=minv[rs],minp[o]=minp[rs];
}
void build(int o,int l,int r){
	if(l==r){
		minv[o]=INF;
		minp[o]=l;
		return;
	}
	int mid=(l+r)>>1;
	build(ls,l,mid);
	build(rs,mid+1,r);
	pushup(o);
}
void modify(int o,int l,int r,int p,int w){
	if(l==r){
		minv[o]=w;
		return;
	}
	int mid=(l+r)>>1;
	if(p<=mid) modify(ls,l,mid,p,w);
	else modify(rs,mid+1,r,p,w);
	pushup(o);
}

int dis[maxn];
void dijkstra(int s){
	build(1,1,n);
	modify(1,1,n,s,0);
	memset(dis,0x3f,sizeof dis);
	dis[s]=0;
	while(minv[1]!=INF){
		int u=minp[1];
		modify(1,1,n,u,INF);
		for(int i=head[u];i;i=e[i].next){
			int v=e[i].v,w=e[i].w;
			if(dis[v]>dis[u]+w){
				dis[v]=dis[u]+w;
				modify(1,1,n,v,dis[v]);
			}
		}
	}
}

int main(){
	cin>>n>>m>>s;
	for(int i=1;i<=m;++i){
		int u,v,d; cin>>u>>v>>d;
		addEdge(u,v,d);
	}
	dijkstra(s);
	for(int i=1;i<=n;i++) cout<<dis[i]<<" ";
	return 0;
}

Dijkstra zkw线段树优化

#include <cctype>
#include <cstdio>
#include <climits>
#include <algorithm>

#define rep(I, A, B) for (int I = (A); I <= (B); ++I)
#define dwn(I, A, B) for (int I = (A); I >= (B); --I)
#define erp(I, X) for (int I = head[X]; I; I = next[I])

template <typename T> inline void read(T& t) {
    int f = 0, c = getchar(); t = 0;
    while (!isdigit(c)) f |= c == '-', c = getchar();
    while (isdigit(c)) t = t * 10 + c - 48, c = getchar();
    if (f) t = -t;
}
template <typename T, typename... Args>
inline void read(T& t, Args&... args) {
    read(t); read(args...); 
}
template <typename T> void write(T x) {
    if (x < 0) x = -x, putchar('-');
    if (x > 9) write(x / 10);
    putchar(x % 10 + 48);
}
template <typename T> void writeln(T x) {
    write(x);
    puts("");
}
template <typename T> inline bool chkMin(T& x, const T& y) { return y < x ? (x = y, true) : false; }
template <typename T> inline bool chkMax(T& x, const T& y) { return x < y ? (x = y, true) : false; }

const int maxn = 1e5 + 207, maxm = 2e5 + 207, inf = INT_MAX;
int v[maxm], w[maxm], head[maxn], next[maxm], tot;
int dist[maxn], mp[maxn << 2], M = 1;
int n, m, s;

inline void ae(int x, int y, int z) { v[++tot] = y; w[tot] = z; next[tot] = head[x]; head[x] = tot; }
inline int cmp(int a, int b) { return dist[a] < dist[b] ? a : b; }
inline void build(int n) {
	while (M < n + 2) M <<= 1;
    mp[0] = n + 1;
}
inline void modify(int x, int nv) {
	for (int i = x + M; dist[mp[i]] > nv; i >>= 1)
    	mp[i] = x;
    dist[x] = nv;
}
inline void del(int x) {
	for (mp[x += M] = 0, x >>= 1; x; x >>= 1)
    	mp[x] = cmp(mp[x << 1], mp[x << 1 | 1]);
}
inline void dijkstra(int s) {
    rep(i, 0, n) dist[i] = inf;
    build(n); modify(s, 0);
    rep(t, 1, n - 1) {
        int x = mp[1]; del(x);
        // 这里没有对dist[v[i]]赋值,赋值操作在modify函数里进行,与上一个代码有所区别
        erp(i, x) if (dist[v[i]] > dist[x] + w[i])
            modify(v[i], dist[x] + w[i]);
    }
}

int main() {
    read(n, m, s);
    rep(i, 1, m) {
        int x, y, z; read(x, y, z); ae(x, y, z);
    }
    dijkstra(s);
    rep(i, 1, n) write(dist[i]), putchar(' ');
    puts("");
    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值