第68期:数学-数论-埃氏筛

该博客介绍了埃氏筛法(Eratosthenes Sieve)的时间复杂度及其在两个实际问题中的应用:1) 计算指定范围内的素数个数;2) 判断单个数是否为素数。通过预处理,可以高效地筛选素数,并进行后续的计算和判断操作。
摘要由CSDN通过智能技术生成

参考

关于埃氏筛法详解_1900_的博客-CSDN博客_埃氏筛

埃氏筛法时间复杂度:O(nlog(logn))

const int maxn=1e6+6;
bool isprime[maxn];
void sieve(){
	for(int i=0;i<=maxn;i++) isprime[i]=true;
	isprime[0]=isprime[1]=false;
	for(int i=2;i<=maxn;i++){//从2开始往后筛
		 if(isprime[i]){
		 	for(int j=2*i;j<=maxn;j+=i){
		 		isprime[j]=false;			
			 }
		 } 
	}
}

问题

1 素数个数问题

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+6;

bool isprime[maxn];
void sieve(){
	for(int i=0;i<=maxn;i++) isprime[i]=true;
	isprime[0]=isprime[1]=false;
	for(int i=2;i<=maxn;i++){//从2开始往后筛
		 if(isprime[i]){
		 	for(int j=2*i;j<=maxn;j+=i){
		 		isprime[j]=false;			
			 }
		 } 
	}
}
int l,r;
int main(){
	sieve();//预处理
	int cnt=0;//计数
	cin>>l>>r;
	for(int i=l;i<=r;i++){
		if(isprime[i]){
			cnt++;
		}
	} 
	cout<<cnt<<endl;
	return 0;
}

2 输入一个数n   判断他是不是素数(多组测试数据)

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+6;

bool isprime[maxn];
void sieve(){
	for(int i=0;i<=maxn;i++) isprime[i]=true;
	isprime[0]=isprime[1]=false;
	for(int i=2;i<=maxn;i++){//从2开始往后筛
		 if(isprime[i]){
		 	for(int j=2*i;j<=maxn;j+=i){
		 		isprime[j]=false;			
			 }
		 } 
	}
}
int n;
int main(){
	sieve();//预处理
	while(scanf("%d",&n)!=EOF){
		if(isprime[n]){
			cout<<"YES\n";
		}else{
			cout<<"NO\n";
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值