题目
给你一个 只包含正整数 的 非空 数组 nums
。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 1:
输入:nums = [1,5,11,5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11] 。
示例 2:
输入:nums = [1,2,3,5] 输出:false 解释:数组不能分割成两个元素和相等的子集。
提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100
解答
源代码
class Solution {
public boolean canPartition(int[] nums) {
if (nums.length < 2) {
return false;
}
int sum = 0, max = 0;
for (int num : nums) {
sum += num;
max = Math.max(max, num);
}
if (sum % 2 == 1) {
return false;
}
if (max > sum / 2) {
return false;
}
boolean[][] dp = new boolean[nums.length][sum / 2 + 1];
dp[0][nums[0]] = true;
for (int i = 0; i < nums.length; i++) {
dp[i][0] = true;
}
for (int i = 1; i < nums.length; i++) {
for (int j = 1; j <= sum / 2; j++) {
if (nums[i] > j) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j] | dp[i - 1][j - nums[i]];
}
}
}
return dp[nums.length - 1][sum / 2];
}
}
总结
实际上是求能否从背包里选取元素,使这些元素之和等于数组所有元素之和的一半。dp[i][j]表示数组{0,…,i}中能否选出和为j的元素。
优化空间复杂度的算法也看了,勉强理解了,但是自己写应该还想不到这样优化。