【代码记录】优化朴素并查集和两种并查集类型模板

本文探讨了如何优化朴素的并查集,以应对大规模数据。通过使用unordered_map替代数组,利用哈希表的快速查询特性提高效率。同时介绍了维护集合大小和节点到祖宗节点距离的并查集实现,分别应用于不同的问题场景,并提供了相关例题链接进行深入理解。
摘要由CSDN通过智能技术生成

优化朴素并查集

朴素并查集用数组存储元素,当数据很大或者数据量很多的时候,会导致无法查询,或者时间复杂度大幅上涨,可以用unordered_map来存储结点,unordered_map内部是哈希表,查询速度快.(自己曾在这里吃过大亏,印象挺深刻,但是题目已经忘了。)

unordered_map<int,int> tt;
int found(int x){
	if(tt[x]==x) return x;
	else tt[x]=found(tt[x]);
}//find函数
int thb()
{
	tt.clear();
	int n;
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i]>>b[i];
		tt[a[i]]=a[i];
		tt[b[i]]=b[i];//init
	} 
	for(int i=1;i<=n;i++)//join
	 if(found(a[i])!=found(b[i]))
        tt[found(a[i)]=tt(b[i]);
}

维护size的并查集

例题:https://www.acwing.com/problem/content/240/

例题:acwing 837

	int p[N], size[N];
    //p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量

    // 返回x的祖宗节点
    int find(int x)
    {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }

    // 初始化,假定节点编号是1~n
    for (int i = 1; i <= n; i ++ )
    {
        p[i] = i;
        size[i] = 1;
    }

    // 合并a和b所在的两个集合:
    size[find(b)] += size[find(a)];
    p[find(a)] = find(b);

维护到祖宗结点距离的并查集

例题:acwing银河英雄传说

int p[N], d[N];
    //p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离
 
    // 返回x的祖宗节点
    int find(int x)
    {
        if (p[x] != x)
        {
            int u = find(p[x]);
            d[x] += d[p[x]];
            p[x] = u;
        }
        return p[x];
    }
 
    // 初始化,假定节点编号是1~n
    for (int i = 1; i <= n; i ++ )
    {
        p[i] = i;
        d[i] = 0;
    }
 
    // 合并a和b所在的两个集合:
    p[find(a)] = find(b);
    d[find(a)] = distance; //初始化find(a)的偏移数值

老家太冷了,最近几天都是感冒发烧,这篇就当回顾知识了,等好点了在补一次

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值