Latent Semantics Encoding for Label Distribution Learning 论文笔记

LSE-LDL是一种标签分布学习方法,通过潜在语义编码进行特征选择,减少噪声影响。该方法在编码的语义空间与标签空间之间保持局部几何结构一致,使用KL散度作为损失函数,并结合正则化来优化模型。其目的是提高分类学习任务的泛化性能。
摘要由CSDN通过智能技术生成

动机和思想

动机

1,大多数实际分类学习任务中存在不相关和冗余特征;
2,数据采集中的噪声会对LDL算法的泛化性能产生负面影响。

主要思想

标签分布学习的潜在语义编码(LSE-LDL),它在潜在语义的指导下学习标签分布并同时实现特征选择。
具体地说,为了减轻噪声干扰,我们寻求并编码有区别的原始物理/化学特征到高级潜在语义特征,然后通过经验风险最小化构建从编码的语义空间到标签空间的映射。

创新点

  1. 潜在语义编码:对原始样本矩阵 X X X 进行特征选择得到新的样本矩阵 Z Z Z
  2. 潜在语义特征空间 Z Z Z 和标签空间 Y Y Y 之间的局部几何结构应该是一致的。也就是说,如果两个实例 x i x_i xi x i ′ x_{i^{'}} xi Y Y Y 中彼此接近,那么它们在 Z Z Z 中也应该彼此接近。

目标函数

在这里插入图片描述
其中:

  1. 第一项表示Loss函数,用的KL散度;

  2. 第二项和第三项表示潜在语义编码和特征选择:
    创建了一个从 m 维 X \mathcal{X} X 到 c 维潜在语义特征空间 Z \mathcal{Z} Z 的映射 ϕ : X → Z \phi : \mathcal{X} \rightarrow \mathcal{Z} ϕ:XZ,称为 ϕ ( x i ) = W ⊤ x i \phi (x_i) = W^\top x_i ϕ(xi)=Wxi,其中 W W W 是大小为 m*c 的特征系数矩阵。

  3. 第四项表示潜在语义特特征空间和标签空间局部几何结构一致性:
    在这里插入图片描述
    相当于计算出一个邻接矩阵,标签空间局部相近的样本值就接近1,不相近的就接近为0。

  4. 第五项是最大熵模型的参数正则化。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值