动机和思想
动机
1,大多数实际分类学习任务中存在不相关和冗余特征;
2,数据采集中的噪声会对LDL算法的泛化性能产生负面影响。
主要思想
标签分布学习的潜在语义编码(LSE-LDL),它在潜在语义的指导下学习标签分布并同时实现特征选择。
具体地说,为了减轻噪声干扰,我们寻求并编码有区别的原始物理/化学特征到高级潜在语义特征,然后通过经验风险最小化构建从编码的语义空间到标签空间的映射。
创新点
- 潜在语义编码:对原始样本矩阵 X X X 进行特征选择得到新的样本矩阵 Z Z Z。
- 潜在语义特征空间 Z Z Z 和标签空间 Y Y Y 之间的局部几何结构应该是一致的。也就是说,如果两个实例 x i x_i xi 和 x i ′ x_{i^{'}} xi′ 在 Y Y Y 中彼此接近,那么它们在 Z Z Z 中也应该彼此接近。
目标函数
其中:
-
第一项表示Loss函数,用的KL散度;
-
第二项和第三项表示潜在语义编码和特征选择:
创建了一个从 m 维 X \mathcal{X} X 到 c 维潜在语义特征空间 Z \mathcal{Z} Z 的映射 ϕ : X → Z \phi : \mathcal{X} \rightarrow \mathcal{Z} ϕ:X→Z,称为 ϕ ( x i ) = W ⊤ x i \phi (x_i) = W^\top x_i ϕ(xi)=W⊤xi,其中 W W W 是大小为 m*c 的特征系数矩阵。 -
第四项表示潜在语义特特征空间和标签空间局部几何结构一致性:
相当于计算出一个邻接矩阵,标签空间局部相近的样本值就接近1,不相近的就接近为0。 -
第五项是最大熵模型的参数正则化。