目录
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
1. 定义
斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89...
自然中的斐波那契数列
这个数列从第3项开始,每一项都等于前两项之和。
斐波那契数列的定义者,是意大利数学家莱昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的莱昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,莱昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。另外斐波纳契还在计算机C语言程序题中应用广泛
2. 与黄金分割的关系
这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618(或者说后一项与前一项的比值小数部分越来越逼近 0.618)。
3. C#代码实现
public static int GetiNum(int n) {
long preVal = 1;
long prePreVal = 0;
if (n < 2)
return n;
long loop = 1;
long returnVal = 0;
while (loop < n) {
returnVal = preVal + prePreVal;
prePreVal = preVal;
preVal = returnVal;
loop++;
}
return returnVal;
}
4. Java代码实现
//①==================================
/**
* 平推方法实现
*/
public static long fibLoop(int num) {
if(num < 1 || num > 92)
return 0;
long a = 1;
long b = 1;
long temp;
for(int i = 2; i < num; i++) {
temp = a;
a = b;
b += temp;
}
return b;
}
//②==================================
/**
* 递归方法实现
* f(n) = f(n - 1) + f(n - 2)
* 最高支持 n = 92 ,否则超出 Long.MAX_VALUE
* @param num n
* @return f(n)
*/
public static long fibRec(int num) {
if(num < 1)
return 0;
if(num < 3)
return 1;
return fibRec(num - 1) + fibRec(num - 2);
}
//③==================================
static long[] l = new long[93];
static {
l[1] = 1;
}
/**
* 带有缓存的方法,比fibRec方法性能好很多
*/
public static long fibBuffRec(int num) {
if(num < 1 || num > 92)
return 0;
if(l[num] == 0)
l[num] = fibBuffRec(num - 1) + fibBuffRec(num - 2);
return l[num];
}
//④==================================
static List<BigDecimal> list = new ArrayList<BigDecimal>(93);
static {
list.add(BigDecimal.ZERO);
list.add(BigDecimal.ONE);
}
/**
* 1,2,3,4,5,6, 7 ,8
* 1,1,2,3,5,8,13,21
* 支持num超过92的超大型数字,使用了ArrayList进行缓存以提高性能
*/
public static BigDecimal fibBig(int num) {
if(num < 0)
return list.get(0);
if (list.size() <= num)
list.add(fibBig(num - 1).add(fibBig(num - 2)));
return list.get(num);
}
5. JavaScript代码实现
//循环算法
function f(n){
if(n == 0){
return 0;
}else if(n ==1){
return 1;
}else{
var fn1 = 0;
var fn2 = 1;
var fnx = 0;
for(var i=0;i<n-1; i++){
var newfn1 = fn2;
fnx = fn1 + fn2;
fn1 = fn2;
fn2 = fnx;
}
return fnx;
}
}
//===============================
//递归算法
function fib(count) {
//参数判断
var count = parseInt(count);
if (isNaN(count) || count <= 0) {
return 0;
}
function f(count) {
if (count <= 2) {
return 1;
}
return f(count - 1) + f(count - 2);
}
return f(count);
}
6. C++代码实现
基本循环算法
#include<bits/stdc++.h>
using namespace std;
int main()
{
int a=0,b=0,c=1,n;
cin>>n;//输入n
for(int i=1;i<=n-1;i++)
{
a=b;
b=c;
c=a+b;
}
cout<<c;//输出最终结果
return 0;
}
数组算法实现
#include<iostream>
using namespace std;
int main()
{
int a[30],i,n;
cin>>n;
a[1]=a[0]=1;
for(i=2;i<n;i++)
{
a[i]=a[i-2]+a[i-1];
}
cout<<a[n-1];
return 0;
}
递归算法实现
#include<iostream>
using namespace std;
int f(int n)
{
return (n<3)? 1 : f(n-1)+f(n-2);//如果是前两项,则输出1
}
int main()
{
int n;
cin>>n;
cout<<f(n);
return 0;
}
递归算法优化(记忆化搜索)
# include <bits/stdc++.h>
const int MAX=101;
using namespace std;
int a[MAX];
int f(int n)
{
if(a[n]!=-1) return a[n];
else
{
a[n]=f(n-1)+f(n-2);
return a[n];
}
}
int main()
{
int n;
cin>>n;
for(int i=0;i<=MAX-1;i++)
{//初始化
a[i]=-1;
}
a[0]=0;a[1]=1;
cout<<f(n);
return 0;
}
高精度计算
#include <bits/stdc++.h>
using namespace std;
char sum[1200];
int s=0,m=0,n;
int main()
{
cin>>n;
string s1,s2;
int a[1200],b[1200];
int he,i;
s1="0";
s2="1";
for(m=2;m<n+1;m++)
{
memset(a,0,sizeof a);
memset(b,0,sizeof b);
a[0]=s1.length();
for(i=1;i<=a[0];i++)
{
a[i]=s1[a[0]-i]-'0';
}
b[0]=s2.length();
for(i=1;i<=b[0];i++)
{
b[i]=s2[b[0]-i]-'0';
}
he=(a[0]>b[0]?a[0]:b[0]);
for(i=1;i<=he;i++)
{
a[i]+=b[i];
a[i+1]+=a[i]/10;
a[i]%=10;
}
he++;
while((a[he]==0)&&(he>1))
he--;
for(i=he,s=0;i>=1;i--,s++)
{
sum[s]=a[i]+'0';
}
s1=s2;
s2=sum;
}
cout<<s2<<endl;
return 0;
}
7. Python3代码实现
#输出在3000以内的斐波那契数列
一、从最大值考虑
numMax = int(input('please input a maxnumber : '))
def flibsOne(numMax):
c = []
a, b = 0, 1
while a < numMax:
a, b = b, a + b
c.append(a)
c.remove(c[-1])
print(c)
二、从位数考虑
num = int(input('please input a number : '))
def flibsTwo(num):
list1 = []
for i in range(num):
if i <=1:
list1.append(1)
else:
list1.append(list1[-2] + list1[-1])
return list1
print(flibsTwo(num)) #输出num位数列
第三种,根据f(n)= f(n-1)+f(n-2)实现
Fbs = [1,1]#斐波那契数列前两位
n = 3
s = input("Maxmun ")#输入最大次数
while n != (int(s)+1) :#因为差一原则所以要再加一
a = Fbs[-1]
b = Fbs[-2]
fb = a+b
print(str(n)+" "+str(fb))
n = n +1
Fbs.append(fb)
8. php代码实现
// 动态规划解斐波那契数列
function fibRec(int $n)
{
if ($n == 0) {
return $n;
}
$a1 = 0;
$a2 = 1;
for ($i = 1; $i < $n; $i++) {
[$a1, $a2] = [$a2, $a1 + $a2];
}
return $a2;
}
9. Rust代码实现
// Rust代码实现
fn main() {
println!("{} {} {} {} {}", fib(0), fib(1), fib(2), fib(3), fib(4));
}
fn fib(d: i32) -> i32 {
if d == 0 || d == 1 {
d
} else {
ficc(d - 2) + ficc(d - 1)
}
}