构造题练习

1.B. GCD Compression

题意:给定n,2n个数a[i],去掉其中2个,让剩下的2(n-1)组成b,使得
gcd(b[1],b[2],…,b[2n-2])>1,输出去掉的数的下标。
:一个数要么是奇数,要么是偶数; 因为gcd>1,因此可以选择gcd=2;那么2
n个数中的奇偶情况如下:

  • A.偶数个奇数,偶数个偶数
  • B.奇数个奇数,奇数个偶数
    情况A的时候,任意取2个奇数或者2个偶数就行了,情况B的时候任意取一个奇数和一个偶数就行了。
    代码:
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<vector>
#include<map>
//#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int odd[2020];
int even[2020];
int n, m;
int a[2020];
int main()
{
	int t;
	cin >> t;
	while (t--)
	{
		cin >> n ;
		int cnt_odd = 0, cnt_even = 0;
		for (int i = 1; i <= 2 * n; i++)
		{
			cin >> a[i];
			if (a[i] % 2) odd[++cnt_odd] = i;
			else even[++cnt_even] = i;
		}
		if (cnt_odd % 2 == 0) 
		{
			if (cnt_odd >= 2) 
			{
				for (int i = 4; i <= cnt_odd; i+=2) cout << odd[i - 1] << " " << odd[i] << endl;
				for (int i = 2; i <= cnt_even; i+=2) cout << even[i - 1] << " " << even[i] << endl;
			}
			else  
			{
				for (int i = 2; i <= cnt_odd; i+=2) cout << odd[i - 1] << " " << odd[i] << endl;
				for (int i = 4; i <= cnt_even; i+=2) cout << even[i - 1] << " " << even[i] << endl;
			}
		}
		else /
		{
			for (int i = 3; i <= cnt_odd; i+=2) cout << odd[i - 1] << " " << odd[i] << endl;
			for (int i = 3; i <= cnt_even; i+=2) cout << even[i - 1] << " " << even[i] << endl;
		}

	}

}

2.C. Prefix Sum Primes

题意:给定n个数,且仅包含1,2;求排序后,其前缀和为素数的数目的最大的排序
:因为素数为奇数(和2),因此,对于每下一位,优先保证前缀和为奇数就行了。
代码

#include<bits/stdc++.h>
using namespace std;
int n;
int cnt;
int a[200011];
int main()
{
	cin>>n;
	cnt=0;
	for(int i=1;i<=n;i++)
	{
		int x;
		cin>>x;
		if(x==2)
		  cnt++;
	}
	if(cnt==0)
	{
		for(int i=1;i<=n;i++)
		  a[i]=1;
	}
	else
	{
		if(cnt==n)
		  for(int i=1;i<=n;i++)
		    a[i]=2;
		else
		{
			a[1]=2,a[2]=1;
			cnt--;
			for(int i=3;i<=cnt+2;i++)
			  a[i]=2;
			for(int i=cnt+3;i<=n;i++)
			  a[i]=1;
		}
	}
	for(int i=1;i<=n;i++)
	{
		cout<<a[i]<<" ";
	}
	return 0;
	
}

3.B. Z mod X = C

题意:给出a,b,c三个 5 数,求 x,y,z其中 x,y,z满足:

  • x%y=a
  • y%z=b
  • z%x=c

先放代码

 #include<bits/stdc++.h>
using namespace std;
int t;
int a[5];
int ans[5];
bool cmp(int x,int y)
{
	return x>y;
}
int pos;
int main()
{
	cin>>t;
	while(t--)
	{
	    pos=1;
		for(int i=1;i<=3;i++)
		{
			cin>>a[i];
			if(a[pos]<=a[i])
			{
				pos=i;
			}
		}
		ans[pos]=a[pos];
	    if(pos==3)
	    {
	    	ans[2]=a[3]+a[2];
	    	ans[1]=ans[2]+a[1];
		}
		else if(pos==2)
		{
			 ans[1]=a[1]+a[2];
			 ans[3]=ans[1]+a[3];
		}
		else
		{
			ans[3]=a[1]+a[3];
			ans[2]=ans[3]+a[2];
		}
		for(int i=1;i<=3;i++)
		  cout<<ans[i]<<" ";
		cout<<endl;
	}
	
}

有点长,证明如下:请添加图片描述

4.B. Difference of GCDs

题意:给定3个数n,l,r。 问:在[l,r]中 是否存在n个数,并且使得gcd(i,a[[i])不同;若存在,输出YES和a;否则输出NO.
:构造a[i]的gcd分别为1,2,3…n; 判断 l/i*i+i 和区间[l,r]的关系
代码:

#include<bits/stdc++.h>
using namespace std;
int n,t,l,r;
const int N=1e5+11;
bool flag;
int a[N];
int main()
{
	cin>>t;
	while(t--)
	{
		flag=1;
		cin>>n>>l>>r;
		for(int i=1;i<=n;i++)
		{
			if( l%i==0 || r%i==0)
			{
				if(l%i==0)
				  a[i]=l;
				else 
				  a[i]=r;
			}
			else if(r/i-l/i>=1)
		    {
		    	a[i]=l/i*i+i;
			}
			else
			{
				flag=0;
				break;
			}
		}
		if(flag)
		{
			cout<<"YES"<<endl;
		    for(int i=1;i<=n;i++)
		      cout<<a[i]<<" ";
		}
		else
		  cout<<"NO";
		cout<<endl;
	}	
}

mood:所以强盗都是成群结队的,道德上也是如此。在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dai _ tu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值