1.B. GCD Compression
题意:给定n,2n个数a[i],去掉其中2个,让剩下的2(n-1)组成b,使得
gcd(b[1],b[2],…,b[2n-2])>1,输出去掉的数的下标。
解:一个数要么是奇数,要么是偶数; 因为gcd>1,因此可以选择gcd=2;那么2n个数中的奇偶情况如下:
- A.偶数个奇数,偶数个偶数
- B.奇数个奇数,奇数个偶数
情况A的时候,任意取2个奇数或者2个偶数就行了,情况B的时候任意取一个奇数和一个偶数就行了。
代码:
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<vector>
#include<map>
//#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int odd[2020];
int even[2020];
int n, m;
int a[2020];
int main()
{
int t;
cin >> t;
while (t--)
{
cin >> n ;
int cnt_odd = 0, cnt_even = 0;
for (int i = 1; i <= 2 * n; i++)
{
cin >> a[i];
if (a[i] % 2) odd[++cnt_odd] = i;
else even[++cnt_even] = i;
}
if (cnt_odd % 2 == 0)
{
if (cnt_odd >= 2)
{
for (int i = 4; i <= cnt_odd; i+=2) cout << odd[i - 1] << " " << odd[i] << endl;
for (int i = 2; i <= cnt_even; i+=2) cout << even[i - 1] << " " << even[i] << endl;
}
else
{
for (int i = 2; i <= cnt_odd; i+=2) cout << odd[i - 1] << " " << odd[i] << endl;
for (int i = 4; i <= cnt_even; i+=2) cout << even[i - 1] << " " << even[i] << endl;
}
}
else /
{
for (int i = 3; i <= cnt_odd; i+=2) cout << odd[i - 1] << " " << odd[i] << endl;
for (int i = 3; i <= cnt_even; i+=2) cout << even[i - 1] << " " << even[i] << endl;
}
}
}
2.C. Prefix Sum Primes
题意:给定n个数,且仅包含1,2;求排序后,其前缀和为素数的数目的最大的排序
解:因为素数为奇数(和2),因此,对于每下一位,优先保证前缀和为奇数就行了。
代码:
#include<bits/stdc++.h>
using namespace std;
int n;
int cnt;
int a[200011];
int main()
{
cin>>n;
cnt=0;
for(int i=1;i<=n;i++)
{
int x;
cin>>x;
if(x==2)
cnt++;
}
if(cnt==0)
{
for(int i=1;i<=n;i++)
a[i]=1;
}
else
{
if(cnt==n)
for(int i=1;i<=n;i++)
a[i]=2;
else
{
a[1]=2,a[2]=1;
cnt--;
for(int i=3;i<=cnt+2;i++)
a[i]=2;
for(int i=cnt+3;i<=n;i++)
a[i]=1;
}
}
for(int i=1;i<=n;i++)
{
cout<<a[i]<<" ";
}
return 0;
}
3.B. Z mod X = C
题意:给出a,b,c三个 5 数,求 x,y,z其中 x,y,z满足:
- x%y=a
- y%z=b
- z%x=c
先放代码:
#include<bits/stdc++.h>
using namespace std;
int t;
int a[5];
int ans[5];
bool cmp(int x,int y)
{
return x>y;
}
int pos;
int main()
{
cin>>t;
while(t--)
{
pos=1;
for(int i=1;i<=3;i++)
{
cin>>a[i];
if(a[pos]<=a[i])
{
pos=i;
}
}
ans[pos]=a[pos];
if(pos==3)
{
ans[2]=a[3]+a[2];
ans[1]=ans[2]+a[1];
}
else if(pos==2)
{
ans[1]=a[1]+a[2];
ans[3]=ans[1]+a[3];
}
else
{
ans[3]=a[1]+a[3];
ans[2]=ans[3]+a[2];
}
for(int i=1;i<=3;i++)
cout<<ans[i]<<" ";
cout<<endl;
}
}
有点长,证明如下:
4.B. Difference of GCDs
题意:给定3个数n,l,r。 问:在[l,r]中 是否存在n个数,并且使得gcd(i,a[[i])不同;若存在,输出YES和a;否则输出NO.
解:构造a[i]的gcd分别为1,2,3…n; 判断 l/i*i+i 和区间[l,r]的关系
代码:
#include<bits/stdc++.h>
using namespace std;
int n,t,l,r;
const int N=1e5+11;
bool flag;
int a[N];
int main()
{
cin>>t;
while(t--)
{
flag=1;
cin>>n>>l>>r;
for(int i=1;i<=n;i++)
{
if( l%i==0 || r%i==0)
{
if(l%i==0)
a[i]=l;
else
a[i]=r;
}
else if(r/i-l/i>=1)
{
a[i]=l/i*i+i;
}
else
{
flag=0;
break;
}
}
if(flag)
{
cout<<"YES"<<endl;
for(int i=1;i<=n;i++)
cout<<a[i]<<" ";
}
else
cout<<"NO";
cout<<endl;
}
}
mood:所以强盗都是成群结队的,道德上也是如此。