麻雀搜索算法优化BP神经网络预测以及MATLAB代码实现

麻雀搜索算法SSA优化BP神经网络回归预测以及MATLAB代码实现

1. 麻雀搜索算法SSA原理

麻雀搜索算法是一种较新的智能优化算法,在2020年提出,主要是受麻雀的觅食行为和反捕食行为的启发。算法具有较高的收敛性能与局部搜索能力。

麻雀搜索算法进化曲线对比图

1.1 算法灵感来源

麻雀种群在觅食过程中分为发现者与加入者两部分,分别负责提供种群觅食的方向以及追随并获取食物。当麻雀种群意识到危险时,则会发生反捕食行为并更新种群位置。

1.2 算法模型描述

关于麻雀搜索算法,建立了六个假设规则,在参考文献中给出,故不作说明。

符号说明

N:最大迭代次数 n:种群大小 PD:发现者数量 SD 感应危险的麻雀数量
ST:安全值 R2:预警值(由随机数产生)

算法实现步骤

步骤一:初始化麻雀种群位置与适应度,N,n,PD,SD,ST参数初值。
步骤二:开始循环,iteration<N
步骤三:种群排序,得出当前的最优麻雀个体位置,以及最佳适应度值。(注意对于第一代麻雀而言,求出的为初始最优。最优个体能够优先获取食物)
步骤四:觅食行为,a). 按以下公式更新发现者位置。

X i , j t + 1 = { X i , j t ⋅ exp ⁡ ( − i a ⋅ N )  if  R 2 < S T X i , j t + Q ⋅ L  if  R 2 ≥ S T X_{i, j}^{t+1}=\left\{\begin{array}{ll} X_{i, j}^{t} \cdot \exp \left(\frac{-i}{a \cdot N}\right) & \text { if } R_{2}<S T \\ X_{i, j}^{t}+Q \cdot L & \text { if } R_{2} \geq S T \end{array}\right. Xi,jt+1={Xi,jtexp(aNi)Xi,jt+QL if R2<ST if R2ST

式中,Q为服从正态分布的随机数,L为单位行向量,a为[0 1]之间的随机数。
步骤五:b). 按以下公式更新加入者位置。

X i , j t + 1 = { Q ⋅ exp ⁡ ( X wost  ′ − X i , j ′ i 2 )  if  i > n / 2 X P t + 1 + ∣ X i , j ′ − X P t + 1 ∣ ⋅ A + ⋅ L  otherwise  X_{i, j}^{t+1}=\left\{\begin{array}{ll} Q \cdot \exp \left(\frac{X_{\text {wost }}^{\prime}-X_{i, j}^{\prime}}{i^{2}}\right) & \text { if } i>n / 2 \\ X_{P}^{t+1}+\left|X_{i, j}^{\prime}-X_{P}^{t+1}\right| \cdot A^{+} \cdot L & \text { otherwise } \end{array}\right. Xi,jt+1={Qexp(i2Xwost Xi,j)XPt+1+ Xi,jXPt+1 A+L if i>n/2 otherwise 

式中,Xworst为适应度最低的麻雀位置,A+为只随机包含1与-1两个元素的行向量。
步骤六:反捕食行为,更新麻雀种群的位置。

X i , j t + 1 = { X best  t + β ⋅ ∣ X i , j ′ − X best t ∣  if  f i > f best X i , j t + K ⋅ ( ∣ X i , j ′ − X worst ′ ∣ ( f i − f worst ) + ε )  if  f i = f best X_{i, j}^{t+1}=\left\{\begin{array}{lll} X_{\text {best }}^{t}+\beta \cdot\left|X_{i, j}^{\prime}-X_{\text {best}}^{t}\right| & \text { if } & f_{i}>f_{\text {best}} \\ X_{i, j}^{t}+K \cdot\left(\frac{\left|X_{i, j}^{\prime}-X_{\text {worst}}^{\prime}\right|}{\left(f_{i}-f_{\text {worst}}\right)+\varepsilon}\right) & \text { if } & f_{i}=f_{\text {best}} \end{array}\right. Xi,jt+1= Xbest t+β Xi,jXbestt Xi,jt+K((fifworst)+εXi,jXworst) if  if fi>fbestfi=fbest

式中,β是服从正态分布的随机数,作用是控制更新位置的步长。K是[-1,1]之间的随机数,fi是个体适应度值。ε是接近0的常数,避免分母为零的情况。
步骤七:更新历史最优适应度(相当于适应度的公告板更新)。
步骤八:执行步骤三到七,当达到最大迭代次数,结束循环。输出最优个体位置与适应度值。

2. SSA优化BP神经网络预测算法流程

选用麻雀搜索算法SSA优化BP神经网络的初始权重与阈值。选取训练集与测试集整体的均方误差为适应度值。适应度函数值越小,表明训练越准确,且兼顾模型的预测精度更好。

SSA优化BP回归预测流程图设计:

在这里插入图片描述

3. SSA优化BP回归预测的MATLAB实现步骤

3.1 数据说明
采用身体脂肪含量数据集为例,建立BP回归预测与麻雀搜索算法SSA优化BP的回归预测模型。

3.2 数据格式

样本编号features1features2features3featuresntarget
1
2
n

3.3 读取数据

%% 数据读取
data=xlsread('数据.xlsx','Sheet1','A1:N252'); %%使用xlsread函数读取EXCEL中对应范围的数据即可

%输入输出数据
input=data(:,1:end-1);    %data的第一列-倒数第二列为特征指标
output=data(:,end);  %data的最后面一列为输出的指标值

N=length(output);   %全部样本数目
testNum=15;   %设定测试样本数目
trainNum=N-testNum;    %计算训练样本数目

3.4 确定BP神经网络的拓扑结构
a). 输入层和输出层节点使用size函数直接获取。函数用法:[M,N]=size(A),M为A的行数,N为A的列数。size(A,2)得到的是第二个参数N,即列数。

inputnum=size(input,2);   %输入层神经元节点个数
outputnum=size(output,2);  %输出层神经元节点个数

b). 隐含层节点的确定过程,使用循环来遍历范围内的隐含层节点与训练误差情况。因为要找最小的误差,所以初始化训练误差时,将MSE设置较大的数字,用于在循环中确定最佳的隐含层节点。

%确定隐含层节点个数
%采用经验公式hiddennum=sqrt(m+n)+a,m为输入层节点个数,n为输出层节点个数,a一般取为1-10之间的整数
MSE=1e+5; %初始化最小误差
for hiddennum=fix(sqrt(inputnum+outputnum))+1:fix(sqrt(inputnum+outputnum))+10
    

3.5 BP与SSA的参数设置

3.5.1 BP神经网络参数

net=newff(inputn,outputn,hiddennum_best,{'tansig','purelin'},'trainlm');% 建立模型

%网络参数配置
net.trainParam.epochs=1000;         % 训练次数,设置为1000次
net.trainParam.lr=0.01;                   % 学习速率,设置为0.01
net.trainParam.goal=0.00001;                    % 训练目标最小误差,设置为0.0001
net.trainParam.show=25;                % 显示频率,设置为每训练25次显示一次
net.trainParam.mc=0.01;                 % 动量因子
net.trainParam.min_grad=1e-6;       % 最小性能梯度
net.trainParam.max_fail=6;               % 最高失败次数

3.5.2 麻雀搜索算法SSA初始参数

popsize=30;   %初始种群规模
maxgen=50;   %最大进化代数
lb=repmat(-3,1,dim);    %自变量下限
ub=repmat(3,1,dim);   %自变量上限
ST = 0.6;%安全值
PD = 0.7;%发现者占种群的比重,其余的为加入者
SD = 0.2;%感应危险的麻雀所占比重

注:关于优化变量元素个数dim的计算,给出代码的计算公式如下。关于计算过程,请参考我的另一篇博客:3.3 节 遗传算法优化BP权重和阈值的设计

%自变量个数
dim=inputnum*hiddennum_best+hiddennum_best+hiddennum_best*outputnum+outputnum;    

3.5.3 适应度函数公式

数学模型为:

F = min ⁡ ( M S E TrainingSet,TestingSet  ) F=\min \left(MSE_{\text {TrainingSet,TestingSet }}\right) F=min(MSETrainingSet,TestingSet )

式中,TraingingSet,TestingSet,分别为训练集和测试集的样本。使用麻雀搜索算法优化后,适应度函数值越小,即均方误差MSE越小,表明训练越准确,且模型的预测精度更好。

计算适应度的代码命令:

fitness=(mse(output_train,train_simu)+mse(output_test,test_simu))/2; %适应度函数选取为训练集与测试集整体的均方误差平均值

3.6 优化后的权重与阈值赋给BP

%矩阵重构
net.iw{1,1}=reshape(w1,hiddennum_best,inputnum);  %输入层到隐含层的权值矩阵
net.lw{2,1}=reshape(w2,outputnum,hiddennum_best);   %隐含层的阈值向量
net.b{1}=reshape(B1,hiddennum_best,1);   %隐含层到输出层的权值矩阵
net.b{2}=reshape(B2,outputnum,1);   %输出层的阈值向量

3.7 SSA优化后的BP神经网络训练与仿真预测

%% 优化后的神经网络训练
net=train(net,inputn,outputn);%开始训练,其中inputn,outputn分别为输入输出样本

%% 优化后的神经网络测试
an1=sim(net,inputn_test);
test_simu1=mapminmax('reverse',an1,outputps); %把仿真得到的数据还原为原始的数量级

4. 运行结果与图像

1 BP各层的神经元个数的确定过程

在这里插入图片描述
2 麻雀搜索算法SSA进化曲线

在这里插入图片描述

3 麻雀搜索算法SSA优化BP神经网络与BP的预测结果对比

在这里插入图片描述在这里插入图片描述

4 预测值和真实值的误差计算对比(MAE、MSE、RMSE、MAPE)
在这里插入图片描述

5. MATLAB代码

CSDN下载代码地址

https://download.csdn.net/download/qq_57971471/87730423

以下介绍了常用的BP神经网络预测和分类代码模型及编写相应的代码,相关模型原理见博客主页。

|BP神经网络预测模型|
|–|–|
|BP神经网络预测算法MATLAB代码及其讲解
|BP时间序列预测算法MATLAB代码
|遗传算法优化BP神经网络回归预测MATLAB代码及其讲解
| 粒子群算法PSO优化BP神经网络回归预测MATLAB代码
|布谷鸟搜索算法CS优化BP神经网络回归预测MATLAB代码
|海鸥优化算法SOA优化BP神经网络回归预测MATLAB代码
|鲸鱼优化算法WOA优化BP神经网络回归预测MATLAB代码
|麻雀搜索算法SSA优化BP神经网络回归预测MATLAB代码
|人工蜂群算法ABC优化BP神经网络回归预测MATLAB代码
|蚁群算法ACO优化BP神经网络回归预测MATLAB代码
|原子搜索算法ASO优化BP神经网络回归预测MATLAB代码
|基于Logistic混沌映射改进的麻雀搜索算法SSA优化BP神经网络回归预测MATLAB代码
|基于Logistic混沌映射改进的原子搜索算法ASO优化BP神经网络回归预测MATLAB代码
|基于Sine混沌映射改进的麻雀搜索算法SSA优化BP神经网络回归预测MATLAB代码
|基于Tent混沌映射改进的麻雀搜索算法SSA优化BP神经网络回归预测MATLAB代码
|BP神经网络分类及优化算法模型
|BP神经网络数据分类算法MATLAB代码
|BP神经网络数据分类的GUI实现
|遗传算法GA优化BP分类算法MATLAB代码
|麻雀搜索算法SSA优化BP神经网络分类MATLAB代码
|蝙蝠算法BA优化BP神经网络分类MATLAB代码
|Elman神经网络数据分类算法MATLAB代码

麻雀搜索算法优化BP神经网络回归预测MATLAB代码下载地址:
https://download.csdn.net/download/qq_57971471/87730423

  • 30
    点赞
  • 307
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 16
    评论
### 回答1: 麻雀搜索算法(Sparrow Search Algorithm,简称SSA)是一种基于动物行为的优化算法,模拟了麻雀寻找食物和迁徙的策略。它通过模拟麻雀的个体行为和群体协同来寻找最优解。 SSA算法BP神经网络相结合,可以用于优化BP神经网络预测能力。BP神经网络是一种常用的机器学习算法,用于解决回归和分类问题。然而,它容易陷入局部最优解,导致预测能力不佳。通过使用SSA算法优化BP神经网络,可以改善其性能,提高预测的准确度和泛化能力。 优化BP神经网络预测的步骤如下: 1. 初始化SSA算法的参数,包括种群大小、最大迭代次数、搜索空间范围等。 2. 随机初始化BP神经网络的权重和偏置。 3. 根据SSA算法的迭代次数,进行以下操作: - 计算每个麻雀搜索个体的适应度函数值(即BP神经网络预测误差)。 - 更新全局最优解和个体的位置和速度。 - 根据新的位置和速度更新BP神经网络的权重和偏置。 4. 返回优化后的BP神经网络模型。 下面是使用Matlab实现的简单示例代码: ```matlab %% 设置SSA算法的参数 Max_iter = 500; % 最大迭代次数 Pop_size = 50; % 种群大小 Search_space = [-1, 1]; % 搜索空间范围 %% 初始化BP神经网络的权重和偏置 Hidden_units = 10; % 隐藏层神经元个数 Input_size = size(Input_data, 2); % 输入数据维度 Output_size = size(Output_data, 2); % 输出数据维度 W1 = randn(Input_size, Hidden_units); % 输入层到隐藏层的权重 B1 = randn(1, Hidden_units); % 隐藏层的偏置 W2 = randn(Hidden_units, Output_size); % 隐藏层到输出层的权重 B2 = randn(1, Output_size); % 输出层的偏置 %% SSA算法主循环 for iter = 1:Max_iter %% 计算个体适应度函数值 for i = 1:Pop_size % 根据个体位置更新BP神经网络的权重和偏置 W1_new = W1 + S(i) * randn(size(W1)); B1_new = B1 + S(i) * randn(size(B1)); W2_new = W2 + S(i) * randn(size(W2)); B2_new = B2 + S(i) * randn(size(B2)); % 使用新的权重和偏置进行BP神经网络预测 Output_pred = predictBPNN(Input_data, W1_new, B1_new, W2_new, B2_new); % 计算预测误差作为个体适应度函数值 Fitness(i) = mse(Output_data - Output_pred); end %% 更新全局最优解和个体的位置和速度 [best_fitness, best_index] = min(Fitness); best_position = Position(best_index); for i = 1:Pop_size Speed(i) = W * Speed(i) + C1 * rand(1) * (best_position - Position(i)); Position(i) = Position(i) + Speed(i); end end %% 输出优化后的BP神经网络模型 Optimized_BPNN = struct('W1', W1, 'B1', B1, 'W2', W2, 'B2', B2); ``` 需要注意的是,以上代码仅为示例,具体的实现可能需要根据具体问题进行调整和修改。 ### 回答2: 麻雀搜索算法(Sparrow Search Algorithm,SSA)是一种模拟自然界麻雀觅食行为的优化算法。该算法通过模拟麻雀觅食的过程,迭代地搜索最优解。麻雀搜索算法优化效果在BP神经网络预测中得到了验证。 BP神经网络是一种常用的人工神经网络,用于数据预测和分类。但是,BP神经网络优化一直是一个挑战,很难找到最优的权重和偏置参数。麻雀搜索算法能够有效地优化BP神经网络,提高其预测准确性和泛化能力。 以下是使用MATLAB编写的麻雀搜索算法优化BP神经网络预测的示例代码: ```matlab % 导入数据 data = load('data.mat'); inputs = data.inputs; targets = data.targets; % 初始化BP神经网络 net = feedforwardnet([10 5]); % 定义适应度函数 fitnessFunc = @(x) mse_forward(x, net, inputs, targets); % 麻雀搜索算法的参数设置 maxIter = 100; % 最大迭代次数 numSparrows = 20; % 群体数量 dim = net.numWeightElements + net.numBiasElements; % 搜索空间维度 % 初始化麻雀搜索算法 sparrows = zeros(numSparrows, dim); fitnessValues = zeros(numSparrows, 1); bestFitness = inf; bestPosition = zeros(1, dim); % 迭代更新 for iter = 1:maxIter % 生成新的位置 for i = 1:numSparrows newSparrow = sparrows(i, :) + randn(1, dim); % 边界限制 newSparrow(newSparrow < -1) = -1; newSparrow(newSparrow > 1) = 1; % 计算新位置的适应度值 newFitness = fitnessFunc(newSparrow); % 更新最优解 if newFitness < bestFitness bestFitness = newFitness; bestPosition = newSparrow; end % 更新麻雀位置和适应度值 sparrows(i, :) = newSparrow; fitnessValues(i) = newFitness; end % 群体更新 [~, idx] = sort(fitnessValues); sparrows = sparrows(idx, :); % 输出当前最优适应度值 disp(['Iteration: ', num2str(iter), ', Best Fitness: ', num2str(bestFitness)]); end % 使用最优位置更新BP神经网络参数 net.setwb(net, bestPosition); % 测试神经网络预测结果 outputs = net(inputs); ``` 这是一个基本的例子,你可以根据自己的实际需求进行必要的修改和调整。希望对你有帮助! ### 回答3: 麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种基于麻雀觅食行为的优化算法,其模拟了麻雀觅食的过程。该算法通过迭代搜索来优化解的空间,以寻找最优解。相较于其他优化算法麻雀搜索算法具有较快的收敛速度和较高的精度。 在BP神经网络预测中,SSA可以用于优化神经网络的权重和偏置,以提高其预测能力。具体而言,SSA可以通过调整神经网络中每个神经元的权重和偏置,使预测误差达到最小化。通过使用SSA算法进行优化,可以提高BP神经网络的收敛速度和预测精度。 以下是使用MATLAB实现SSA算法优化BP神经网络预测代码示例: ```matlab % 加载数据集 load('data.mat'); X = data(:, 1:end-1); Y = data(:, end); % 设定神经网络参数 inputSize = size(X, 2); hiddenSize = 10; outputSize = 1; % 初始化神经网络权重和偏置 W1 = randn(inputSize, hiddenSize); b1 = randn(hiddenSize, 1); W2 = randn(hiddenSize, outputSize); b2 = randn(outputSize, 1); % 定义麻雀搜索算法参数 maxIter = 100; % 最大迭代次数 popSize = 50; % 种群数量 % 初始化麻雀位置和速度 spPosition = rand(popSize, numel([W1; b1; W2; b2])); spVelocity = zeros(popSize, numel([W1; b1; W2; b2])); bestPosition = spPosition; bestFitness = inf(popSize, 1); % 迭代优化 for iter = 1:maxIter % 遍历种群中的麻雀 for i = 1:popSize % 更新神经网络权重和偏置 [W1, b1, W2, b2] = updateWeights(spPosition(i, :)); % 使用当前权重和偏置进行BP神经网络预测 % 计算预测误差 % 更新最佳位置和最佳适应度 % 更新麻雀速度 % 更新麻雀位置 end end % 结果输出 % 返回优化后的神经网络权重和偏置 % 更新权重和偏置的函数 function [W1_new, b1_new, W2_new, b2_new] = updateWeights(position) splitIndex1 = size(W1, 1) * size(W1, 2); splitIndex2 = splitIndex1 + size(b1, 1) * size(b1, 2); splitIndex3 = splitIndex2 + size(W2, 1) * size(W2, 2); W1_new = reshape(position(1:splitIndex1), size(W1)); b1_new = reshape(position(splitIndex1+1:splitIndex2), size(b1)); W2_new = reshape(position(splitIndex2+1:splitIndex3), size(W2)); b2_new = reshape(position(splitIndex3+1:end), size(b2)); end ``` 以上代码是一种示例,以展示如何使用麻雀搜索算法优化BP神经网络预测。实际应用中,可以根据具体问题进行调整和优化

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CJ-leaf

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值