Prim算法和Kruskal算法到底哪个好?

Prim算法和Kruskal算法都是用于找到加权连通图的最小生成树,但策略不同。Prim算法从一个顶点开始,每次添加最近的未连接顶点,而Kruskal则是按权重排序边并避免形成环。Kruskal在效率上优于Prim,因为它只需一次排序。文章提供了两个算法的Java实现例子,并给出了一道相关编程题的解题思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Prim和Kruskal有啥区别?到底哪个好?

今天做了一道最小生成树的题,发现了一点猫腻!
题目在这里 : 《修路问题1》



先说结论

Prim算法Kruskal算法 都是从连通图中找出 最小生成树 的经典算法~

从策略上来说,Prim算法是直接查找,多次寻找邻边的权重最小值,而 Kruskal是需要先对权重排序后查找的

所以说,Kruskal在算法效率上是比Prim快的 ,因为Kruskal只需一次对权重的排序就能找到最小生成树,而Prim算法需要多次对邻边排序才能找到~

Prim

Prim算法是一种产生最小生成树的算法。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;
并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。

Prim算法从任意一个顶点开始每次选择一个与当前顶点集最近的一个顶点,并将两顶点之间的边加入到树中。Prim算法在找当前最近顶点时使用到了贪婪算法。朴素版时间复杂度为:O(n²) ,堆优化过后的prim时间复杂度为O(mlogn)

算法描述:

  1. 在一个加权连通图中,顶点集合V,边集合为E
  2. 任意选出一个点作为初始顶点,标记为visit,计算所有与之相连接的点的距离,选择距离最短的,标记visit.
  3. 重复以下操作,直到所有点都被标记为visit:
    在剩下的点中,计算与已标记visit点距离最小的点,标记visit,证明加入了最小生成树。

在这里插入图片描述

Kruskal

Kruskal是另一个计算最小生成树的算法,其算法原理如下。首先,将每个顶点放入其自身的数据集合中。然后,按照权值的升序来选择边。当选择每条边时,判断定义边的顶点是否在不同的数据集中。如果是,将此边插入最小生成树的集合中,同时,将集合中包含每个顶点的联合体取出,如果不是,就移动到下一条边。重复这个过程直到所有的边都探查过。

在这里插入图片描述
在这里插入图片描述

第1步:将边<E,F>加入R中。
边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
第2步:将边<C,D>加入R中。
上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
第3步:将边<D,E>加入R中。
上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
第4步:将边<B,F>加入R中。
上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
第5步:将边<E,G>加入R中。
上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
第6步:将边<A,B>加入R中。
上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。

修路问题1——题目描述

在这里插入图片描述
在这里插入图片描述
输入示例:

5 6
1 2 2
1 3 7
1 4 6
2 3 1
3 4 3
3 5 2

输出

8

Kruskal(过了100%)

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Arrays;

/**
 * Created with IntelliJ IDEA.
 *
 * @Auther: LiangXinRui
 * @Date: 2023/3/3 9:07
 * @Description: Kruskal算法在找最小生成树结点之前,需要对权重从小到大进行排序。
 * 将排序好的权重边依次加入到最小生成树中(如果加入时产生回路就跳过这条边,加入下一条边),
 * 当所有的结点都加入到最小生成树中后,就找到了这个连通图的最小生成树~
 */
public class demo83_kruskal_修建公路 {
    static final int N = 300005;
    static int n,m,count;
    static long sum;
    static Edge[] edges = new Edge[N];
    static int[] pre = new int[N];
    static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

    static int find(int v) {
        if (v != pre[v]) {
            pre[v] = find(pre[v]);
        }
        return pre[v];
    }

    public static void main(String[] args) throws Exception {
        String[] s = br.readLine().split(" ");
        n = Integer.parseInt(s[0]);
        m = Integer.parseInt(s[1]);
        for (int i = 1; i <= n; i++) {
            pre[i] = i;
        }
        for (int i = 0; i < m; i++) {
            String[] s1 = br.readLine().split(" ");
            int a, b, c;
            a = Integer.parseInt(s1[0]);
            b = Integer.parseInt(s1[1]);
            c = Integer.parseInt(s1[2]);
            edges[i] = new Edge(a, b, c);
        }
        Arrays.sort(edges, 0, m);

        for (int i = 0; i < m; i++) {
            int a = edges[i].a;
            int b = edges[i].b;
            int w = edges[i].w;
            a = find(a);
            b = find(b);
            if (a != b) {//这里不能写成 if (find(a) != find(b))
                pre[a] = b;
                sum += w;
                count++;
            }
        }
        if (count == n - 1) {
            System.out.println(sum);
        } else {
            System.out.println(-1);
        }

    }

    static class Edge implements Comparable<Edge> {
        int a;
        int b;
        int w;

        Edge(int a, int b, int w) {
            this.a = a;
            this.b = b;
            this.w = w;
        }

        public int compareTo(Edge e) {
            return w - e.w;
        }
    }
}



堆优化的prim(过了60%,有可能哪儿写错了?)

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;

/**
 * @Author: LiangXinRui
 * @Date: 2023/03/02/20:16
 * @Description:
 */

public class demo83_prim_堆优化 {
    static int[] head, next, ends, pre;
    static int n, m, num, total, begin;
    static double sum;
    static double[] weights, dis;
    static boolean[] vis;
    static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

    static class pair {
        double first;//记录 边权
        int second;//记录 下一个结点

        public pair() {
        }

        public pair(double first, int second) {
            this.first = first;
            this.second = second;
        }
    }

    //自定义比较类,升序排列
    static Comparator<pair> comparator = (o1, o2) -> o1.first - o2.first > 0 ? 1 : 0;
    
    static Queue<pair> queue = new PriorityQueue<>(comparator);

    static void add(int start, int end, int weight) {
        ends[total] = end;
        weights[total] = weight;
        next[total] = head[start];
        head[start] = total;
        total++;
    }

    static void prim() {
        queue.offer(new pair(weights[0], ends[0]));
        vis[begin] = true;
        while (!queue.isEmpty() && num < n) {
            double len = queue.peek().first;
            int to = queue.peek().second;
            queue.poll();
            if (!vis[to]) {
                sum += len;
                num++;// 找到一条边
                vis[to] = true;// 标记一下,表示我这条边已经用过
                for (int i = head[to]; i != -1; i = next[i]) {
                    if (weights[i] < dis[ends[i]]) {// 如果当前边权小,更新
                        dis[ends[i]] = weights[i];
                        queue.offer(new pair(weights[i], ends[i]));// 把新的边权和结点加入队列
                    }
                }
            }
        }
    }

    public static void main(String[] args) throws IOException {
        String[] firstStr = br.readLine().split(" ");
        n = Integer.parseInt(firstStr[0]);
        m = Integer.parseInt(firstStr[1]);
        dis = new double[n + 1];
        head = new int[2 * m + 1];//表示以 i 为起点的最后一条边的编号
        next = new int[2 * m + 1];//存储与当前边起点相同的上一条边的编号
        ends = new int[2 * m + 1];//存储边的终点
        weights = new double[2 * m + 1];//存储边的权值
        vis = new boolean[2 * m + 1];
        Arrays.fill(head, -1);//初始化
        for (int i = 1; i <= n; i++) {
            dis[i] = Double.MAX_VALUE / 2;
        }
        for (int i = 0; i < m; i++) {
            String[] secondStr = br.readLine().split(" ");
            int start = Integer.parseInt(secondStr[0]);
            if (i == 0) begin = start;
            int end = Integer.parseInt(secondStr[1]);
            int weight = Integer.parseInt(secondStr[2]);
            add(start, end, weight);
            add(end, start, weight);
        }
        prim();
        if (n - 1 == num) {
            System.out.printf("%.0f", sum);
        } else {
            System.out.println("-1");
        }
    }

}


总结

遇到困难时首先想到的不应该是退缩,而是探索!

文章粗浅,希望对大家有帮助!

参考博客:
【最小生成树】Prim算法和Kruskal算法的区别对比
Prim算法(java)
克鲁斯卡尔算法(Kruskal)详解

### Prim算法Kruskal算法的比较 #### 工作原理的不同 Prim算法是从任意一个顶点开始构建最小生成树,逐步扩展已有的部分直到覆盖所有顶点。每次迭代过程中选取当前未被纳入生成树集合中的离已有结构最近的一个节点并将其加入其中[^4]。 相比之下,Kruskal算法则侧重于处理边而非顶点。该方法首先按照权值升序排列所有的边,在遍历这些有序列表的同时尝试添加每条边至正在形成的森林里——只要这样做不会形成环路即可[^5]。 #### 数据结构的选择 对于Prim算法而言,通常会利用优先队列来高效找到下一个要访问的最佳候选者;而在实现上可以借助二叉堆或是斐波那契堆等高级数据结构进一步优化性能表现[^3]。 另一方面,由于Kruskal算法涉及频繁查询两个端点是否属于同一连通分量的操作,因此一般配合不相交集(Union-Find)的数据结构使用以加速此类判断过程[^1]。 #### 时间复杂度分析 当面对稠密图时,即边的数量接近于\(V^2\)的情况之下,Prim算法能够展现出更优的时间效率,特别是通过邻接矩阵表示法下的朴素版本更是如此。然而,在稀疏图的情况下,则应考虑采用基于边表表达形式的Kruskal方案,其主要开销在于初始阶段对全部边实施排序操作\[O(E\log E)\]。 #### 应用场景建议 针对具体的应用环境选择合适的最小生成树算法至关重要: - 对于较为密集的网络拓扑结构,推荐选用Prim算法; - 如果待解决问题所对应的图形呈现明显稀疏特征,则更适合应用Kruskal算法来进行求解。 ```cpp // 示例代码展示两种算法的核心逻辑差异 (C++) // Prim Algorithm Core Logic void prim(vector<vector<int>>& graph, int start){ priority_queue<pair<int,int>, vector<pair<int,int>>, greater<>> pq; vector<bool> visited(graph.size(), false); pq.push({0,start}); while(!pq.empty()){ auto [weight,node]=pq.top(); pq.pop(); if(visited[node]) continue; visited[node]=true; // Process node and add adjacent nodes to the queue... } } // Kruskal Algorithm Core Logic struct Edge { int u,v,w; }; bool cmp(const Edge& a,const Edge& b){return a.w<b.w;} int find(int x,vector<int>& parent); void kruskal(vector<Edge>& edges, int n){ sort(edges.begin(),edges.end(),cmp); vector<int>parent(n),rank(n,0); iota(parent.begin(),parent.end(),0); for(auto &e : edges){ int pu=find(e.u,parent),pv=find(e.v,parent); if(pu!=pv){ union_sets(pu,pv,parent,rank); // Add edge e into MST ... } } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微风撞见云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值