计算机内数制的相互转换

概念

用进位的原则进行计数称为进位计数制,简称数制。进位计数制的特点是表示数值大小的数码与它所处的位置有关,每种数制都包含两个基本要素:“基数”和“位权”。

基数

数码是一组用来表示某种数值的符号,数制所使用的数码个数就称为“基数”或“基”。一个r进制数具有r个数码:0、1、2、…… r - 1,基数为r

  1. 进制,由0、1两个数码组成,基数为2

  1. 进制,由0、1、2、3、4、5、6、7八个数码组成,基数为8

  1. 进制,由0、1、2、3、4、5、6、7、8、9十个数码组成,基数为10

  1. 十六进制,由0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F十六个数码组成,基数为16

位权

数码在不同位置上的权值称为位权,位权是个乘方值,底数为进位计数制的基数,而指数由各数字所在数中的位置决定,例如:

常用的几种进位数制

  1. 二进制B

由0和1这两个数码组成,基数为2。

二进制的特点是逢二进一,借一当二

  1. 八进制O

由0、1、2、3、4、5、6、7八个数码组成,基数为8。

八进制的特点是逢八进一,借一当八

  1. 十进制D

由0、1、2、3、4、5、6、7、8、9十个数码组成,基数为10。

十进制的特点是逢十进一,借一当十

  1. 十六进制H

由0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F十六个数码组成,基数为16。

十六进制的特点是逢十六进一,借一当十六

⭐书写时一般用以下两种数制表示方法:

  1. 数字用括号括起来,再加上数制的下标:(12)8、(1001)2、(35)10、(520)16。

  1. 用进位制的字母符号:12O、1001B、35D、520H。

在不产生歧义时,可以不注明十进制数的进制。如果题目中没有明确标注,则默认数值为十进制数。

各进制之间的对应关系

二进制

八进制

十进制

十六进制

0

0

0

0

1

1

1

1

10

2

2

2

11

3

3

3

100

4

4

4

101

5

5

5

110

6

6

6

111

7

7

7

1000

10

8

8

1001

11

9

9

1010

12

10

A

1011

13

11

B

1100

14

12

C

1101

15

13

D

1110

16

14

E

1111

17

15

F

二进制数的运算规则

加法:0+0=0;0+1=1;1+0=1;1+1=10(向高位有进位)

减法:0-0=0;1-0=1;1-1=0;10-1=1(向高位有借位)

二进制数的逻辑运算规则

  1. 逻辑与AND:有0为0。

00=0,01=0,10=0,11=1。

  1. 逻辑或OR:有1为1。

00=0,01=1,10=1,11=1。

  1. 逻辑非NOT:1=0;0=1;0变1,1变0。

  1. 逻辑异或XOR:相同为0,不同为1。

00=0,01=1,10=1,11=0。

二、八、十六进制转十进制

方法:位权展开求和

10110.011B=1*2^4+0*2^3+1*2^2+1*2^1+0*2^0+0*2^-1+1*2^-2+1*2^-3=22.375D

217O=2*8^2+1*8^1+7*8^0=143D

3ABH=3*16^2+10*16^1+11*16^0=939D

十进制转二、八、十六进制

整数除二、八、十六取余数,到不能被2、8、16整除为止,得到余数从下往上排。

小数乘二、八、十六取整数,直到小数为0,无限循环小数直到满足精度要求为止,得到整数从上往下排。

二、八、十六相互转换
  1. 二转八:3位一组,421法则

  1. 二转十六:4位一组,8421法则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值