概念
用进位的原则进行计数称为进位计数制,简称数制。进位计数制的特点是表示数值大小的数码与它所处的位置有关,每种数制都包含两个基本要素:“基数”和“位权”。
基数
数码是一组用来表示某种数值的符号,数制所使用的数码个数就称为“基数”或“基”。一个r进制数具有r个数码:0、1、2、…… r - 1,基数为r。
二进制,由0、1两个数码组成,基数为2。
八进制,由0、1、2、3、4、5、6、7八个数码组成,基数为8。
十进制,由0、1、2、3、4、5、6、7、8、9十个数码组成,基数为10。
十六进制,由0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F十六个数码组成,基数为16。
位权
数码在不同位置上的权值称为位权,位权是个乘方值,底数为进位计数制的基数,而指数由各数字所在数中的位置决定,例如:
常用的几种进位数制
二进制B
由0和1这两个数码组成,基数为2。
二进制的特点是逢二进一,借一当二。
八进制O
由0、1、2、3、4、5、6、7八个数码组成,基数为8。
八进制的特点是逢八进一,借一当八。
十进制D
由0、1、2、3、4、5、6、7、8、9十个数码组成,基数为10。
十进制的特点是逢十进一,借一当十。
十六进制H
由0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F十六个数码组成,基数为16。
十六进制的特点是逢十六进一,借一当十六。
⭐书写时一般用以下两种数制表示方法:
数字用括号括起来,再加上数制的下标:(12)8、(1001)2、(35)10、(520)16。
用进位制的字母符号:12O、1001B、35D、520H。
在不产生歧义时,可以不注明十进制数的进制。如果题目中没有明确标注,则默认数值为十进制数。
各进制之间的对应关系
二进制 | 八进制 | 十进制 | 十六进制 |
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
10 | 2 | 2 | 2 |
11 | 3 | 3 | 3 |
100 | 4 | 4 | 4 |
101 | 5 | 5 | 5 |
110 | 6 | 6 | 6 |
111 | 7 | 7 | 7 |
1000 | 10 | 8 | 8 |
1001 | 11 | 9 | 9 |
1010 | 12 | 10 | A |
1011 | 13 | 11 | B |
1100 | 14 | 12 | C |
1101 | 15 | 13 | D |
1110 | 16 | 14 | E |
1111 | 17 | 15 | F |
二进制数的运算规则
加法:0+0=0;0+1=1;1+0=1;1+1=10(向高位有进位)
减法:0-0=0;1-0=1;1-1=0;10-1=1(向高位有借位)
二进制数的逻辑运算规则
逻辑与AND:有0为0。
0∧0=0,0∧1=0,1∧0=0,1∧1=1。
逻辑或OR:有1为1。
0∨0=0,0∨1=1,1∨0=1,1∨1=1。
逻辑非NOT:1=0;0=1;0变1,1变0。
逻辑异或XOR:相同为0,不同为1。
0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0。
二、八、十六进制转十进制
方法:位权展开求和。
10110.011B=1*2^4+0*2^3+1*2^2+1*2^1+0*2^0+0*2^-1+1*2^-2+1*2^-3=22.375D
217O=2*8^2+1*8^1+7*8^0=143D
3ABH=3*16^2+10*16^1+11*16^0=939D
十进制转二、八、十六进制
整数除二、八、十六取余数,到不能被2、8、16整除为止,得到余数从下往上排。
小数乘二、八、十六取整数,直到小数为0,无限循环小数直到满足精度要求为止,得到整数从上往下排。
二、八、十六相互转换
二转八:3位一组,421法则
二转十六:4位一组,8421法则