数据清洗处理实战:pandas运用.drop()方法删除特定行与列的方法详解 - 按条件删除单行、多行、单列、多列、多条件删除与数据框替换应用实例讲解

一、具体语法格式

官方文档对具体的语法格式是这样解释的:

DataFrame.drop(labels=None*axis=0index=Nonecolumns=Nonelevel=Noneinplace=Falseerrors='raise')

Drop specified labels from rows or columns.

Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. See the user guide for more information about the now unused levels.

Parameters

labels: single label or list-like   就是要删除的行列的名字,用列表给定。

Index or column labels to drop. A tuple will be used as a single label and not treated as a list-like.

axis:{0 or ‘index’, 1 or ‘columns’}, default 0 用于确定要删除的是行还是列,0表示行,1表示列

Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).

index:single label or list-like,删除的行索引

Alternative to specifying axis (labels, axis=0 is equivalent to index=labels).

columns:single label or list-like,删除的列索引。

Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).

level:int or level name, optional,只适用于具有多层索引的数据帧,指定要删除的级别。

For MultiIndex, level from which the labels will be removed.

inplace:bool, default False, 指定是否在原始数据帧中进行删除操作。默认值为False。

If False, return a copy. Otherwise, do operation inplace and return None.

errors:{‘ignore’, ‘raise’}, default ‘raise’,指定如何处理无效标签。如果它们是raise,则引发异常。否则,可以将它们忽略或打印警告信息。

If ‘ignore’, suppress error and only existing labels are dropped.

Returns

DataFrame or None

DataFrame without the removed index or column labels or None if inplace=True.

Raises

KeyError

If any of the labels is not found in the selected axis.

二、具体应用举例

import pandas as pd

# 创建一个数据框
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
        'age': [25, 32, 18, 47],
        'gender': ['F', 'M', 'M', 'M'],
        'score': [85, 90, 76, 67]}
df = pd.DataFrame(data)

  

以下举例都是在数据框 的基础上进行。

(一)使用drop()方法删除pandas.DataFrame的行

1.使用索引删除行:

df.drop(1,axis=0)

   

对比结果我们可以看出,索引为1的行被删除了。

2.使用索引删除多行

方法一:直接在列表中列举行索引名称

  

df.drop([1,2,3],axis=0) 与 df.drop(index=[1,2,3])等效。

方法二:使用索引批量删除连续行

(注意此时需要借助df.index)

  

3. 删除某列指定值所在的行

df = df.drop(df[df['name'] == 'Bob'].index) # 删除姓名列名子叫Bob的行
df

  

4. 根据某列条件删除多行的值

df = df.drop(df[df['score'] < 80].index) # 删除分数小于80的行
df

  

5. 根据多个列的条件删除行

(1)多条件相 或

# 删除性别为M或者分数小于90的行
df = df.drop(df[(df['gender'] == 'M') | (df['score'] < 90)].index)
df

  

(2)多条件相与情况的删除

# 删除性别为M 同时分数小于90的行
df = df.drop(df[(df['gender'] == 'M') & (df['score'] < 90)].index)
df

  

(二)删除列

由于方法和删除行没有本质的区别,简单举例

1.删除单列

# 删除单列
df.drop('score', axis=1, inplace=True) # 注意此处 axis参数为1
print(df)
上面语句和下面语句等效
# 删除单列
df = df.drop('score', axis=1) # 注意此处 axis参数为1
print(df)

2.删除多列

# 删除多列
df.drop(df.columns[1:3], axis=1, inplace=True)
print(df)

(三)删除重复行

详见前期文章:

数据清洗处理实战:pandas查找与删除重复行(duplicate()与drop_duplicate()方法详解)_pandas删除重复值_吃饭的家伙事儿的博客-CSDN博客


 

文章总结收集处理不易,帮到您了,别忘了点攒收藏,如有什么问题,欢迎留言讨论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃饭的家伙事儿

您的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值