# -*- coding: utf-8 -*-"""
Created on Sun Oct 23 13:57:22 2022
@author: Lenovo
"""import seaborn as sns
from scipy.stats import pearsonr
import matplotlib as mpl
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
from mpl_toolkits.axes_grid1 import make_axes_locatable
plt.rcParams['savefig.dpi']=600#图片像素
plt.rcParams['figure.dpi']=600
path =r'D:\河北省土地利用\19901'for lujing ,year inzip(os.listdir(path),[1990,1999,2004,2009,2014,2019]):
p = pd.read_csv(os.path.join(path,lujing))print(p.columns)
p = p[['MEAN','MEAN_1','MEAN_12','MEAN_12_13']]
p0 = p.loc[p['MEAN_1']>=0,['MEAN','MEAN_1']]
p0['MEAN']=[x/100-273for x in p0['MEAN']]
p0 = p0.reset_index(drop=True)
p1 = p.loc[p['MEAN_12']>=0,['MEAN','MEAN_12']]
p1['MEAN']=[x/100-273for x in p1['MEAN']]
p1 = p1.reset_index(drop=True)
p2 = p.loc[p['MEAN_12_13']>=0,['MEAN','MEAN_12_13']]
p2['MEAN']=[x/100-273for x in p2['MEAN']]
p2 = p2.reset_index(drop=True)
x = p0['MEAN_1']
y = p0['MEAN']
x1 = p1['MEAN_12']
y1 = p1['MEAN']
x2 = p2['MEAN_12_13']
y2 = p2['MEAN']
plt.figure(figsize