【组合图【核密度散点图+热力图】1*3】

本文介绍了如何使用Python进行数据可视化,通过结合核密度散点图和热力图,实现1*3的组合图表展示。内容涵盖了matplotlib和seaborn库的使用技巧,为机器学习项目的探索性数据分析提供有效工具。
摘要由CSDN通过智能技术生成

在这里插入图片描述

# -*- coding: utf-8 -*-
"""
Created on Sun Oct 23 13:57:22 2022

@author: Lenovo
"""

import seaborn as sns
from scipy.stats import pearsonr
import matplotlib as mpl
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
from mpl_toolkits.axes_grid1 import make_axes_locatable

plt.rcParams['savefig.dpi'] = 600 #图片像素
plt.rcParams['figure.dpi'] = 600

path = r'D:\河北省土地利用\19901'
for lujing ,year in zip(os.listdir(path),[1990,1999,2004,2009,2014,2019]):
 
    p = pd.read_csv(os.path.join(path,lujing))
    print(p.columns)
    p = p[['MEAN','MEAN_1','MEAN_12', 'MEAN_12_13']]
    
    p0 = p.loc[p['MEAN_1']>=0,['MEAN','MEAN_1']]
    p0['MEAN']=[x/100-273 for x in p0['MEAN']]
    p0 = p0.reset_index(drop=True)
    
    p1 = p.loc[p['MEAN_12']>=0,['MEAN','MEAN_12']]
    p1['MEAN']=[x/100-273 for x in p1['MEAN']]
    p1 = p1.reset_index(drop=True)
    
    p2 = p.loc[p['MEAN_12_13']>=0,['MEAN','MEAN_12_13']]
    p2['MEAN']=[x/100-273 for x in p2['MEAN']]
    p2 = p2.reset_index(drop=True)
    
    x = p0['MEAN_1']
    y = p0['MEAN']
    
    
    x1 = p1['MEAN_12']
    y1 = p1['MEAN']
    
    x2 = p2['MEAN_12_13']
    y2 = p2['MEAN']
    
    
    plt.figure(figsize
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值