深度学习计算

一、定义

1、(block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块便于将一些块组合成更大的组件。

2、从编程的角度来看,块由(class)表示。 它的任何子类都必须定义一个将其输入转换为输出的前向传播函数, 并且必须存储任何必需的参数。为了计算梯度,块必须具有反向传播函数,但反向传播我们使用自动求导,我们只需要考虑前向传播函数和必需的参数。

3、实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的;nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 它维护了一个由Module(这个里面是层)组成的有序列表。

net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

4、块的功能

(1)将输入数据作为其前向传播函数的参数。

(2)通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。

(3)计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。

(4)存储和访问前向传播计算所需的参数。

(5)根据需要初始化模型参数。

二、层与块

1、自定义块:从零开始编写一个块。,它包含一个多层感知机

class MLP(nn.Module):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层
        self.out = nn.Linear(256, 10)  # 输出层

    # 定义模型的前向传播,即根据输入X返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        #个人理解,先x输入进入隐藏层,然后进行relu,然后进行输出层
        return self.out(F.relu(self.hidden(X)))

2、顺序块

class MySequential(nn.Module):
    #就像之前一样,传入我们所需的层
    def __init__(self, *args):
        super().__init__()
        #idx是一个整数变量,表示当前循环迭代中的模块的索引位置,从0开始递增
        for idx, module in enumerate(args):
            # 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
            # 变量_modules中。_module的类型是OrderedDict,这里这个容器就是放我们所需要的层
            self._modules[str(idx)] = module

    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X

3、在前向传播函数中执行代码:在这个FixedHiddenMLP模型中,实现了一个隐藏层,权重不是一个模型参数,因此它永远不会被反向传播更新,神经网络将这个固定层的输出通过一个全连接层。

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 不计算梯度的随机权重参数。因此其在训练期间保持不变
        self.rand_weight = torch.rand((20, 20), requires_grad=False)
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        # 使用创建的常量参数以及relu和mm函数
        #relu(xw+b)
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数
        X = self.linear(X)
        # 控制流,将x的值逐步缩小,直到其绝对值之和不超过1
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()

三、参数管理

1、参数访问

(1)检查第二个全连接层的参数:

print(net[2].state_dict())->
OrderedDict([('weight', tensor([[-0.0427, -0.2939, -0.1894, 0.0220, -0.1709, -0.1522, -0.0334, -0.2263]])), ('bias', tensor([0.0887]))])

(2)访问底层的数值

#第一个parameter是模块,第二个parameter是指可以优化的参数
print(type(net[2].bias))    -><class 'torch.nn.parameter.Parameter'>
print(net[2].bias)    ->Parameter containing:tensor([0.0887], requires_grad=True)
print(net[2].bias.data)    ->tensor([0.0887])

(3)一次性访问所有参数

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])
    ->('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
    ->('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))

(4)访问其他参数

net.state_dict()['2.bias'].data    ->tensor([0.0887])

3、从嵌套块收集参数

def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())

def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}', block1())
    return net

rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
print(rgnet)->>输出结果在下面
Sequential(
  (0): Sequential(
    (block 0): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 1): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 2): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 3): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
  )
  (1): Linear(in_features=4, out_features=1, bias=True)
)

四、参数初始化

1、内置初始化

(1)所有权重参数初始化为标准差为0.01的高斯随机变量, 将偏置参数设置为0

def init_normal(m):
    if type(m) == nn.Linear:
        #带下划线是替换函数,会将第一个参数(m.weight)替换掉
        nn.init.normal_(m.weight, mean=0, std=0.01)
        nn.init.zeros_(m.bias)
#apply就是接收一个函数,对立面的每个元素都用这个函数执行一遍,apply函数可以对所有层进行操作。
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]

(2)将所有参数初始化为给定的常数,比如初始化为1

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)
        nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

(3)使用Xavier初始化方法初始化第一个神经网络层

def init_xavier(m):
    if type(m) == nn.Linear:
        #写在上一节,旨在保持每层网络的输入和输出的方差一致,从而避免梯度消失或爆炸的问题,可以       在不同的输入输出维度下进行权重范围选择达到目的
        nn.init.xavier_uniform_(m.weight)
def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)

(4)对不同的层可以使用不同的初始化函数,适应要求

2、自定义初始化

def my_init(m):
    if type(m) == nn.Linear:
        #输出第一个线性层的权重参数的名称和形状
        print("Init", *[(name, param.shape)for name, param in m.named_parameters()][0])
        #线性层的权重进行均匀分布初始化,从区间 [−10,10] 的均匀分布中随机抽取的值
        nn.init.uniform_(m.weight, -10, 10)
        #保留绝对值大于5的元素,不大于5就设为(先计算m.weight.data.abs() >= 5生成bool类型的0、1,然后m.weight.data做*=运算)
        m.weight.data *= m.weight.data.abs() >= 5

net.apply(my_init)
net[0].weight[:2]#对模型net中第一个线性层的前两个权重的访问

3、参数绑定

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                    shared, nn.ReLU(),
                    shared, nn.ReLU(),
                    nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])

输出值会为true

五、自定义层

1、不带参数的层

class CenteredLayer(nn.Module):
    def __init__(self):
        super().__init__()
    def forward(self, X):
        #使其均值为0
        return X - X.mean()

2、带参数的层

class MyLinear(nn.Module):
    def __init__(self, in_units, units):
        super().__init__()
        #in_units和units分别表示输入数和输出数
        self.weight = nn.Parameter(torch.randn(in_units, units))
        #(units,)是一个长度为1的元组
        self.bias = nn.Parameter(torch.randn(units,))
    def forward(self, X):
        linear = torch.matmul(X, self.weight.data) + self.bias.data
        return F.relu(linear)
#可以使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))

六、读写文件

1、加载和保存张量

#加载
x = torch.arange(4)
torch.save(x, 'x-file')
#下载
x2 = torch.load('x-file')

2、加载和保存张量列表

y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
(x2, y2)

3、写入或读取从字符串映射到张量的字典

mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2

4、加载和保存模型参数

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))

net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

#将模型的参数存储在一个叫做“mlp.params”的文件中
torch.save(net.state_dict(), 'mlp.params')

#读取文件中存储的参数
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值