转置卷积方法

一、定义

1、卷积神经网络层通常会减少(或保持不变)采样输入图像的空间维度(高和宽),另一种类型的卷积神经网络层,它可以增加上采样中间层特征图的空间维度, 用于逆转下采样导致的空间尺寸减小。

2、转置卷积(感觉就是卷积的反过来)也是一种卷积

(1)卷积做下采样(减少特征图的空间分辨率的过程),转置卷积做上采样(增加特征图的空间分辨率)。

(2)转置卷积操作

(3)形状换算

二、操作

1、对输入矩阵X和卷积核矩阵K实现基本的转置卷积运算

def trans_conv(X, K):
    h, w = K.shape
    #卷积输出尺寸是(x-h)/s+1,(x-w)/s+1
    Y = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
    for i in range(X.shape[0]):
        for j in range(X.shape[1]):
            Y[i: i + h, j: j + w] += X[i, j] * K
    return Y

也有api实现

X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, bias=False)
tconv.weight.data = K
tconv(X)

2、填充、步幅和多通道

X = torch.rand(size=(1, 10, 16, 16))
conv = nn.Conv2d(10, 20, kernel_size=5, padding=2, stride=3)
tconv = nn.ConvTranspose2d(20, 10, kernel_size=5, padding=2, stride=3)
tconv(conv(X)).shape == X.shape
### 转置卷积解释 转置卷积(Transposed Convolution),也被称为反卷积或分数步长卷积,是一种用于扩大输入特征图尺寸的操作。这种操作常见于生成模型以及语义分割网络中。 在标准的二维卷积过程中,滤波器滑动过输入矩阵并计算局部区域内的加权和来创建较小的输出矩阵;而转置卷积则相反,它通过插值方式增加空间维度上的分辨率[^1]。 具体来说,对于给定大小为 \(H \times W\) 的输入张量 X 和形状为 \(K_h \times K_w\) 的核权重 W,经过填充 (padding) p、步幅 s 后得到的新高度 H' 和宽度 W' 可表示如下: \[ H' = (H - 1)s - 2p + K_h \] \[ W' = (W - 1)s - 2p + K_w \] 当设置合适的 padding 值时,可以使得输出尺寸恰好等于期望的目标尺寸。 ### 实现方法 以下是 Python 中 PyTorch 库实现的一个简单例子: ```python import torch.nn as nn class TransposeConvLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=2, padding=1, output_padding=1): super(TransposeConvLayer, self).__init__() # 定义转置卷积层 self.conv_transpose = nn.ConvTranspose2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, output_padding=output_padding ) def forward(self, x): return self.conv_transpose(x) # 创建实例化对象 layer = TransposeConvLayer(in_channels=64, out_channels=32) # 输入张量模拟 input_tensor = torch.randn((8, 64, 32, 32)) output_tensor = layer(input_tensor) print(output_tensor.shape) ``` 此代码片段展示了如何定义一个具有指定超参数的转置卷积层,并将其应用于随机初始化的数据上以查看输出尺寸变化情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值