归一化均方误差(Normalized Mean Square Error, NMSE)是衡量预测值和实际值之间差异的一种方法,通常用于评估模型的性能。NMSE通过对均方误差(MSE)进行归一化处理,使得不同规模数据集之间的误差可以相互比较。NMSE的计算公式如下:
归一化均方误差的值越小,说明预测值与实际值之间的差距越小,模型的性能越好。NMSE的一个优点是它不受量纲的影响,因此适用于不同量级的数据之间的比较。此外,当分母使用实际值的方差时,NMSE实际上反映了预测误差相对于数据本身变异性的大小。如果NMSE接近于0,则表示预测效果非常好;而如果其值较大,则表示预测效果不佳。