归一化均方误差(NMSE)

归一化均方误差(Normalized Mean Square Error, NMSE)是衡量预测值和实际值之间差异的一种方法,通常用于评估模型的性能。NMSE通过对均方误差(MSE)进行归一化处理,使得不同规模数据集之间的误差可以相互比较。NMSE的计算公式如下:

归一化均方误差的值越小,说明预测值与实际值之间的差距越小,模型的性能越好。NMSE的一个优点是它不受量纲的影响,因此适用于不同量级的数据之间的比较。此外,当分母使用实际值的方差时,NMSE实际上反映了预测误差相对于数据本身变异性的大小。如果NMSE接近于0,则表示预测效果非常好;而如果其值较大,则表示预测效果不佳。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值