图像处理之图像质量评价指标MSE(均方误差)

本文介绍了用于评估图像质量的均方误差(MSE)概念及其计算方法,包括针对RGB图像和灰度图像的不同处理方式,并通过MATLAB实现进行了具体演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、MSE基本定义

MSE全称为“Mean Square Error”,中文意思即为均方误差,是衡量图像质量的指标之一。计算原理为真实值与预测值的差值的平方然后求和再平均,公式如下:
在这里插入图片描述
其中, M为图像I的像素总数,N为图像K的像素总数。MSE值越小,说明图像越相似。计算MSE有四种方法:

方法一:计算RGB图像三个通道每个通道的MSE值再求平均值

方法二:直接使用matlab的内置函数immse()(注意该函数将所有图像当成灰度图像处理)

方法三:判断图像的维度,若是三维即为RGB图像求其MSE,若是二维即为灰度图像求其MSE

方法四:同方法三,对MSE进行归一化处理

二、matlab实现MSE

1、

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值