- 博客(5)
- 收藏
- 关注
原创 深度学习第四站——基于bert实现酒店评论情感分析
class MyModel(nn.Module): # 创建模型self.tokenizer = BertTokenizer.from_pretrained(bert_path) # 分词器self.cls_head = nn.Linear(768, num_class) # 分类头微调至n类def forward(self, text): # "pt"返回pytorch张量。
2024-01-31 23:48:04 1276
原创 深度学习第三站——图片分类任务(扩展半监督学习)
半监督学习流程:先由“有标签数据集”训练模型,使模型达到一个较好的分类准确率(0.6),接着让模型对无标签的数据进行分类,对分类的结果中,让置信度高于0.99的部分作为有标签的数据集,加入到对模型的训练中。本semiDataset类主要实现:传入无标签数据,对其进行分类,再由所设定置信度为门槛,决定对哪些数据进打上标签,最后返回两个列表,即X和对应的标签Y。本get_semi_loader函数,当半监督训练集非空的时候,创建并返回一个数据提供器semi_loader(一次提供16份数据,不进行打乱)
2024-01-27 17:17:37 492 2
原创 深度学习第三站——图片分类任务
扩大步长:正常卷积一次移动一格,扩大步长可以让卷积计算时扩大每次移动的格子数,使特征图与感受野比对后变小,达到缩小特征图的目的。I:input(输入特征图的维度) K:卷积核大小(维度) P:padding S:stride(步长)自适应池化Adaptive Pooling:设置输出的大小,交给pytorch。池化(pooling):划分为多个区域,每个区域用一个数值表示(最大值,平均值)卷积尺寸计算公式:O = (I-K+2P)/S+1。8.Dropout:丢弃某些神经元,缓解过拟合。
2024-01-25 11:38:51 1004
原创 深度学习第二站——新冠预测
S1:每一轮训练,取“训练集”中的X和Y,将X依次送入模型算出预测值pred,用pred和Y计算出train_loss,梯度回传,取“局部测试集”的X和Y,将X依次送入模型算出预测值pred,用pred和Y计算出val_loss,保存最优模型。__init__,用于将数据从csv文件中读入,并设定train(训练),val(局部测试),test(测试)三个模式,并分割样本数据为训练集和局部测试集,方便后续验证模型准确性。4、evaluate类,用test数据集,用训练出的最佳模型计算预测值。
2024-01-19 09:33:43 971 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人