- 博客(5)
- 收藏
- 关注
原创 机器学习03——感知机3
这里,ai>=0(也就是xiyi的倍数),i=1,2,······,N。对偶形式的基本想法是,将w和b表示为实例xi和标记yi的线性组合的形式,通过求解其系数而求得w和b。逐步修改w,b,设修改n次,则w,b关于(xi,yi)的增量分别是ai*yi*xi和ai*yi,这里。训练数据集T={(x1,y1),(x2,y2),······,(xn,yn)},其中,xi∈X∈。,这样,从学习过程可以看出,最后学习到的w,b可以分别表示为。(这样求得的是正值)
2024-09-30 18:37:16
918
原创 机器学习03——感知机2
当一个实例点被误分类,即位于分离超平面的错误一侧时,则调整w,b的值,使分离超平面向该误分类点的一侧移动,以减少该误分类点与超平面间的距离,直至超平面越过该误分类点使其被正确分类。给定一个训练数据集T={(x1,y1),(x2,y2),······,(xn,yn)},其中,xi∈X∈。设训练数据集T={(x1,y1),(x2,y2),······,(xn,yn)}是线性可分的,其中,xi∈X∈。输入:训练数据集T={(x1,y1),(x2,y2),······,(xn,yn)},其中,xi∈X∈。
2024-09-30 13:46:43
1484
原创 机器学习03——感知机1
感知机当中的损失函数不少采取误分类点的总数,因为它是离散的点,不是参数w,b连续可导函数,不易优化,可以选择误分类点导超平面S的总距离。,yi属于Y属于{+1,-1},i = 1,2,···,n,如果存在某个超平面S:w*x+b = 0 ,能够将数据集的正负实例点分到超平面的两侧,则称数据集T为线性可分数据集;1.1 感知机:感知机是二类分类的线性分类模型,输入为实例的特征向量,输出为实例的类别,取+1、-1二值,感知机将特征空间的输入实例,通过分离超平面分为正负两类,属于判别类型。
2024-09-29 21:37:36
1575
原创 机器学习笔记-02
{p(x|θ)*p(θ)}dθ 实际上是积分问题,要在整个参数空间内进行求积分,实际上计算很复杂很麻烦,这就引申出新的计算方法,从贝叶斯角度发展出来的概率图模型,如果从贝叶斯角度来看就是求积分问题(MCMC求积分、数值积分);从频率派角度发展出来统计机器学习模型,实际上是一个优化问题(设计模型、损失函数、算法解决损失)(所以说频率派问题会演变为优化问题、贝叶斯派问题会演变为求积分问题)若θ为未知的常量,x为随机变量(r.v)。若θ为随机变量(r.v),θ~p(θ),一般情况下将p(θ)称为。
2024-09-24 17:14:31
355
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人