机器学习入门-01

一、频率派与贝叶斯派介绍

1.频率派

频率派发展为统计机器学习

书籍:《统计学习方法》李航——可以进行学习讲的是感知机、k近邻法、朴素贝叶斯法、决策树、逻辑回归、支持向量机、提升方法、EM算法、隐马尔可夫模型、条件随机场、《机器学习》西瓜书周志华、《The Elements of Statistical Learning》

2.贝叶斯派

贝叶斯派发展为概率图模型。

书籍:《PRML模式识别与机器学习》、《MALTAB app designer》

深度学习:《Deep Learning》圣经(张志华翻译)

推荐课程:

台大林轩田《机器学习基石》(SVM讲的比较好)

台大林宏毅《机器学习/深度学习》(cnn rnn)《MLDS》(优化算法、自然语言算法)

《机器学习导论》(概率派)、《统计机器学习》(贝叶斯派)张志华

吴恩达CS229(有深度)

徐亦达《机器学习》(讲EM模型等概率模型、github当中的Notes较为前沿全面)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值