【Python爬虫实战篇】--爬取豆瓣电影信息(静态网页)

网站,:豆瓣电影 Top 250

爬取豆瓣前250电影的信息, 

F12打开网页控制台,查看网页元素,

 发现网页数据直接可以查看到,为静态网页数据,较为简单

目录

1.第一步使用urllib库获取网页

2.第二步使用BeautifulSoup和re库解析数据

2.1.定位数据块

​2.2.正则化匹配

3.第三步数据导出excel

完整代码:


1.第一步使用urllib库获取网页

观察网页url结构:

 首先,我们分析一下这个网页的结构,是一个还算比较规则的网页,每页25条,一共10页。

    我们点击第一页:url = https://movie.douban.com/top250?start=0&filter=

    我们点击第二页:url = 豆瓣电影 Top 250

    我们点击第三页:url = 豆瓣电影 Top 250

import urllib.request, urllib.error
 
# 定义基础url,发现规律,每页最后变动的是start=后面的数字
baseurl = "https://movie.douban.com/top250?start="
 
 
# 定义一个函数getHtmlByURL,得到指定url网页的内容
def geturl(url):
    # 自定义headers(伪装,告诉豆瓣服务器,我们是什么类型的机器,以免被反爬虫)
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36'
    }
    # 利用Request类来构造自定义头的请求
    req = urllib.request.Request(url, headers=headers)
    # 定义一个接收变量,用于接收
    html = ""
    try:
        # urlopen()方法的参数,发送给服务器并接收响应
        resp = urllib.request.urlopen(req)
        # urlopen()获取页面内容,返回的数据格式为bytes类型,需要decode()解码,转换成str类型
        html = resp.read().decode("utf-8")
    except urllib.error.URLError as e:
        if hasattr(e, "code"):
            print(e.code)
        if hasattr(e, "reason"):
            print(e.reason)
    return html
 
print(geturl(baseurl + "0"))
 
 

2.第二步使用BeautifulSoup和re库解析数据

2.1.定位数据块

 需要找到我们需要的信息在对应数据中的那个位置里面,可以在控制台定位,

我们需要获取的数据标签是 ‘div’,类名是‘item’,

from bs4 import BeautifulSoup


# 定义一个函数,并解析这个网页
def analysisData(url):
    # 获取指定网页
    html = geturl(url)
    # 指定解析器解析html,得到BeautifulSoup对象
    soup = BeautifulSoup(html, "html5lib")
    # 定位我们的数据块在哪
    for item in soup.find_all('div', class_="item"):
        print(item)
    return ""

analysisData(baseurl)

2.2.正则化匹配

现在获取到的块还是原始的css代码,创建正则化匹配筛选出我们需要的数据,

  • 提取详细链接:

 findLink = re.compile(r'<a href="(.*?)">')

  •  图片

 findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)

  •  片名

findTitle = re.compile(r'<span class="title">(.*)</span>')

import re

# 定义正则对象获取指定的内容
# 提取链接(链接的格式都是<a href="开头的)
findLink = re.compile(r'<a href="(.*?)">')
# 提取图片
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)  # re.S让 '.' 特殊字符匹配任何字符,包括换行符;
# 提取影片名称
findTitle = re.compile(r'<span class="title">(.*)</span>')
# 提取影片评分
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
# 提取评价人数
findJudge = re.compile(r'<span>(\d*)人评价</span>')
# 提取简介
inq= re.compile(r'<p\s+class="quote">.*?<span>(.*?)</span>.*?</p>', re.S)
# 提取相关内容
findBd = re.compile(
    r'<div class="bd">\s*<p>\s*'
    r'导演: (.*?)\s*主演: (.*?)<br/>\s*'
    r'(\d{4}).*?/\s*(.*?)\s*/\s*(.*?)\s*</p>',
    re.S
)


# 定义一个函数,并解析这个网页
def analysisData(baseurl):
    # 获取指定网页
    html = geturl(baseurl)
    # 指定解析器解析html,得到BeautifulSoup对象
    soup = BeautifulSoup(html, "html5lib")
    dataList = []
    # 定位我们的数据块在哪
    for item in soup.find_all('div', class_="item"):
        # item 是 bs4.element.Tag 对象,这里将其转换成字符串来处理
        item = str(item)
        # 定义一个列表 来存储每一个电影解析的内容
        data = []
        # findall返回的是一个列表,这里提取链接
        link = re.findall(findLink, item)[0]
        data.append(link)  # 添加链接
        img = re.findall(findImgSrc, item)[0]
        data.append(img)  # 添加图片链接
        title = re.findall(findTitle, item)
        # 一般都有一个中文名 一个外文名
        if len(title) == 2:
            # ['肖申克的救赎', '\xa0/\xa0The Shawshank Redemption']
            titlename = title[0] + title[1].replace(u'\xa0', '')
        else:
            titlename = title[0] + ""
        data.append(titlename)  # 添加标题
        pf = re.findall(findRating, item)[0]
        data.append(pf)
        pjrs = re.findall(findJudge, item)[0]
        data.append(pjrs)
        # 有的可能没有
        inqInfo = re.findall(inq, item)
        if len(inqInfo) == 0:
            data.append(" ")
        else:
            data.append(inqInfo[0])

        matches = re.findall(findBd,  item)
        if matches:  # 确保列表非空
            bd = matches[0]
        else:
            bd = None  # 或设定默认值/抛出异常
        # [('\n                            导演: 弗兰克·德拉邦特 Frank Darabont\xa0\xa0\xa0主演: 蒂姆·罗宾斯 Tim Robbins /...<br/>\n                            1994\xa0/\xa0美国\xa0/\xa0犯罪 剧情\n                        ', '\n\n                        \n                        ')]
        # bd[0].replace(u'\xa0', '').replace('<br/>', '')
        # bd = re.sub('<\\s*b\\s*r\\s*/\\s*>', "", bd[0])
        # bd = re.sub('(\\s+)?', '', bd)
        data.append(bd)
        dataList.append(data)
    return dataList

print(analysisData(baseurl))

3.第三步数据导出excel

因为处理的是一个页面的,所以需要写一个循环,


import xlwt


def main():
    allData = []
    for i in range(0, 250, 25):
        url = baseurl + str(i)
        dataList = analysisData(url)
        allData.extend(dataList)
    savepath = "C:\pythonProject\python爬虫\爬取豆瓣电影\豆瓣250.xls"
    book = xlwt.Workbook(encoding="utf-8", style_compression=0)  # 创建Workbook对象
    sheet = book.add_sheet("豆瓣电影Top250", cell_overwrite_ok=True)  # 创建工作表
    col = ("电影详情链接", "图片链接", "电影中/外文名", "评分", "评论人数", "概况", "相关信息")
    print(len(allData))
    for i in range(0, 7):
        sheet.write(0, i, col[i])
    for i in range(0, 250):
        print('正在保存第'+str((i+1))+'条')
        data = allData[i]
        for j in range(len(data)):
            sheet.write(i + 1, j, data[j])
    book.save(savepath)

if __name__ == '__main__':
    main()

完整代码:

import urllib.request, urllib.error

# 定义基础url,发现规律,每页最后变动的是start=后面的数字
baseurl = "https://movie.douban.com/top250?start="

# 定义一个函数getHtmlByURL,得到指定url网页的内容
def geturl(url):
    # 自定义headers(伪装,告诉豆瓣服务器,我们是什么类型的机器,以免被反爬虫)
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36'
    }
    # 利用Request类来构造自定义头的请求
    req = urllib.request.Request(url, headers=headers)
    # 定义一个接收变量,用于接收
    html = ""
    try:
        # urlopen()方法的参数,发送给服务器并接收响应
        resp = urllib.request.urlopen(req)
        # urlopen()获取页面内容,返回的数据格式为bytes类型,需要decode()解码,转换成str类型
        html = resp.read().decode("utf-8")
    except urllib.error.URLError as e:
        if hasattr(e, "code"):
            print(e.code)
        if hasattr(e, "reason"):
            print(e.reason)
    return html

from bs4 import BeautifulSoup


# 定义一个函数,并解析这个网页
def analysisData(url):
    # 获取指定网页
    html = geturl(url)
    # 指定解析器解析html,得到BeautifulSoup对象
    soup = BeautifulSoup(html, "html5lib")
    # 定位我们的数据块在哪
    for item in soup.find_all('div', class_="item"):
        print(item)
    return ""

analysisData(baseurl)
import re

# 定义正则对象获取指定的内容
# 提取链接(链接的格式都是<a href="开头的)
findLink = re.compile(r'<a href="(.*?)">')
# 提取图片
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)  # re.S让 '.' 特殊字符匹配任何字符,包括换行符;
# 提取影片名称
findTitle = re.compile(r'<span class="title">(.*)</span>')
# 提取影片评分
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
# 提取评价人数
findJudge = re.compile(r'<span>(\d*)人评价</span>')
# 提取简介
inq= re.compile(r'<p\s+class="quote">.*?<span>(.*?)</span>.*?</p>', re.S)
# 提取相关内容
findBd = re.compile(
    r'<div class="bd">\s*<p>\s*'
    r'导演: (.*?)\s*主演: (.*?)<br/>\s*'
    r'(\d{4}).*?/\s*(.*?)\s*/\s*(.*?)\s*</p>',
    re.S
)


# 定义一个函数,并解析这个网页
def analysisData(baseurl):
    # 获取指定网页
    html = geturl(baseurl)
    # 指定解析器解析html,得到BeautifulSoup对象
    soup = BeautifulSoup(html, "html5lib")
    dataList = []

    # 定位我们的数据块在哪
    for item in soup.find_all('div', class_="item"):
        # item 是 bs4.element.Tag 对象,这里将其转换成字符串来处理
        item = str(item)
        # 定义一个列表 来存储每一个电影解析的内容
        data = []
        # findall返回的是一个列表,这里提取链接
        link = re.findall(findLink, item)[0]
        data.append(link)  # 添加链接
        img = re.findall(findImgSrc, item)[0]
        data.append(img)  # 添加图片链接
        title = re.findall(findTitle, item)
        # 一般都有一个中文名 一个外文名
        if len(title) == 2:
            # ['肖申克的救赎', '\xa0/\xa0The Shawshank Redemption']
            titlename = title[0] + title[1].replace(u'\xa0', '')
        else:
            titlename = title[0] + ""
        data.append(titlename)  # 添加标题
        pf = re.findall(findRating, item)[0]
        data.append(pf)
        pjrs = re.findall(findJudge, item)[0]
        data.append(pjrs)
        # 有的可能没有
        inqInfo = re.findall(inq, item)
        if len(inqInfo) == 0:
            data.append(" ")
        else:
            data.append(inqInfo[0])

        matches = re.findall(findBd,  item)
        if matches:  # 确保列表非空
            bd = matches[0]
        else:
            bd = None  # 或设定默认值/抛出异常
        # [('\n                            导演: 弗兰克·德拉邦特 Frank Darabont\xa0\xa0\xa0主演: 蒂姆·罗宾斯 Tim Robbins /...<br/>\n                            1994\xa0/\xa0美国\xa0/\xa0犯罪 剧情\n                        ', '\n\n                        \n                        ')]
        # bd[0].replace(u'\xa0', '').replace('<br/>', '')
        # bd = re.sub('<\\s*b\\s*r\\s*/\\s*>', "", bd[0])
        # bd = re.sub('(\\s+)?', '', bd)
        data.append(bd)
        dataList.append(data)
    return dataList


import xlwt


def main():
    allData = []
    for i in range(0, 250, 25):
        url = baseurl + str(i)
        dataList = analysisData(url)
        allData.extend(dataList)
    savepath = "C:\pythonProject\python爬虫\爬取豆瓣电影\豆瓣250.xls"
    book = xlwt.Workbook(encoding="utf-8", style_compression=0)  # 创建Workbook对象
    sheet = book.add_sheet("豆瓣电影Top250", cell_overwrite_ok=True)  # 创建工作表
    col = ("电影详情链接", "图片链接", "电影中/外文名", "评分", "评论人数", "概况", "相关信息")
    print(len(allData))
    for i in range(0, 7):
        sheet.write(0, i, col[i])
    for i in range(0, 250):
        print('正在保存第'+str((i+1))+'条')
        data = allData[i]
        for j in range(len(data)):
            sheet.write(i + 1, j, data[j])
    book.save(savepath)

if __name__ == '__main__':
    main()



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西柚小萌新吖(●ˇ∀ˇ●)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值