最优化方法_罚函数法例题

本章知识点在《最优化方法_罚函数法

1 外点罚函数

算法1 外点罚函数法

  1. 给定初点eq?x%5E%7B%281%29%7D%5Cin%20R%5E%7Bn%7D,初始罚因子eq?%5Csigma%20_%7B1%7D,放大系数eq?%5Cgamma%20%3E1,允许误差eq?%5Cvarepsilon%20%3E0,置k=1。
  2. eq?x%5E%7B%28k%29%7D为初始点,求解无约束问题eq?minF%28x%2C%5Csigma%20%29得最优解eq?x%5E%7B%28k+1%29%7D
  3. 如果eq?%5Csigma%20_%7Bk%7DP%28x%5E%7B%28k+1%29%7D%29%3C%5Cvarepsilon,则停止计算,eq?x%5E%7B%28k+1%29%7D为约束问题的近似最优解;否 则,增大罚因子eq?%5Csigma%20_%7Bk+1%7D%3D%5Cgamma%20%5Csigma%20_%7Bk%7D,令k=k+1,转步骤2。

 笔记:对于外点罚函数求解问题一般把罚函数构造成

P(x)=\sum_{i=1}^{m}(h_{i}(x))^{2}+\sum_{j=1}^{l}[max\left \{ 0,-g_{j}(x) \right \}]^{2}

例题:(用外点罚函数求解)

2 内点罚函数

算法2 内点罚函数

  1. 给定初点eq?x%5E%7B%281%29%7D%5Cin%20int%5C%3B%20F,初始罚函数因子eq?%5Cmu%20_%7B1%7D缩小系数eq?%5Cgamma%20%3C1,允许误差eq?%5Cvarepsilon%20%3E0,置k=1。
  2. eq?x%5E%7B%28k%29%7D为初始点,求解无约束问题eq?min%5C%3B%20%5C%3B%20F%28x%2C%5Cmu%20_%7Bk%7D%29得最优解eq?x%5E%7B%28k+1%29%7D
  3. 如果eq?%5Cmu%20_%7Bk%7DB%28x%5E%7B%28k+1%29%7D%29%3C%5Cvarepsilon,则停止计算,eq?x%5E%7B%28k+1%29%7D为约束问题的近似最优解;否 则,增大罚因子eq?%5Csigma%20_%7Bk+1%7D%3D%5Cgamma%20%5Csigma%20_%7Bk%7D,令k=k+1,转步骤2。

  笔记:对于内点罚函数求解问题一般把罚函数构造成

eq?F%28x%2C%5Cmu%20%29%3Df%28x%29+%5Cmu%20B%28x%29

  1. 倒数障碍函数eq?B%28x%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bl%7D%5Cfrac%7B1%7D%7Bg_%7Bi%7D%28x%29%7D
  2. 对数障碍函数eq?B%28x%29%3D-%5Csum_%7Bi%3D1%7D%5E%7Bl%7Dlng_%7Bi%7D%28x%29

例题:(用对数障碍罚函数法求解)

数最优解:f^{*}=2

3 广义乘子法

3.1 等式约束问题的广义乘子罚函数法

函数3 等式约束问题的广义乘子罚函数法

  1. 给定初点eq?x%5E%7B%281%29%7D,初始乘子向量eq?v%5E%7B%281%29%7D,初始罚因子eq?%5Csigma%20_%7B1%7D,放大系数eq?%5Cgamma%20%3C1,允许误差eq?%5Cvarepsilon%20%3E0,置k=1。
  2. eq?x%5E%7B%28k%29%7D为初始点,固定eq?v%3Dv%5E%7B%28k%29%7D求解无约束问题eq?min%5C%3B%20%5Cphi%20%28x%2Cv%2C%5Csigma%20%29得最优解eq?x%5E%7B%28k+1%29%7D
  3. 如果eq?%5Cleft%20%5C%7C%20h%28x%5E%7B%28k+1%29%7D%29%20%5Cright%20%5C%7C%3C%5Cvarepsilon,则停止计算,eq?x%5E%7B%28k+1%29%7D为约束问题eq?min%20f%28x%29的近似最优解;否 则,进行步骤4。
  4. eq?%5Cfrac%7B%5Cleft%20%5C%7C%20h%28x%5E%7B%28k+1%29%7D%29%20%5Cright%20%5C%7C%7D%7B%5Cleft%20%5C%7C%20h%28x%5E%7B%28k%29%7D%29%20%5Cright%20%5C%7C%7D%5Cgeq%20%5Cbeta,令eq?%5Csigma%20_%7Bk+1%7D%3D%5Cgamma%20%5Csigma%20_%7Bk%7D,否则转步骤5;否则,进行步骤5。
  5. eq?v_%7Bi%7D%5E%7B%28k+1%29%7D%3Dv_%7Bi%7D%5E%7B%28k%29%7D-%5Csigma%20h_%7Bi%7D%28x%5E%7B%28k%29%7D%29%2Ci%3D1%2C...%2Cm更新乘子,令k=k+1,转步骤2.

   笔记:对于广义乘子法求解等式约束问题一般把罚函数构造成

乘子修正公式:

例题:(用广义乘子法求解)

由修正公式x^{(k)}的取值,得

3.2 不等式约束问题的广义乘子罚函数法

算法4 不等式约束问题的广义乘子罚函数法

  1. 给定初点eq?x%5E%7B%281%29%7D,初始乘子向量eq?v%5E%7B%281%29%7D,初始罚因子eq?%5Csigma%20_%7B1%7D,放大系数eq?%5Cgamma%20%3C1,允许误差eq?%5Cvarepsilon%20%3E0,置k=1。
  2. eq?x%5E%7B%28k%29%7D为初始点,固定eq?v%3Dv%5E%7B%28k%29%7D求解无约束问题eq?min%5C%3B%20%5Cvarphi%20%28x%2Cv%2C%5Csigma%20%29得最优解eq?x%5E%7B%28k+1%29%7D
  3. 如果eq?%5Cleft%20%5C%7C%20max%5Cleft%20%5C%7B%200%2C-g%28x%5E%7B%28k+1%29%7D%29%20%5Cright%20%5C%7D%5Cright%20%5C%7C%3C%5Cvarepsilon,则停止计算,eq?x%5E%7B%28k+1%29%7D为约束问题eq?min%20f%28x%29的近似最优解;否 则,进行步骤4。
  4. eq?%5Cfrac%7B%5Cleft%20%5C%7C%20max%5Cleft%20%5C%7B%200%2C-g%28x%5E%7B%28k+1%29%7D%29%20%5Cright%20%5C%7D%5Cright%20%5C%7C%7D%7B%5Cleft%20%5C%7C%20max%5Cleft%20%5C%7B%200%2C-g%28x%5E%7B%28k%29%7D%29%20%5Cright%20%5C%7D%5Cright%20%5C%7C%7D%5Cgeq%20%5Cbeta,令eq?%5Csigma%20_%7Bk+1%7D%3D%5Cgamma%20%5Csigma%20_%7Bk%7D,否则转步骤5;否则,进行步骤5。
  5. eq?v_%7Bi%7D%5E%7B%28k+1%29%7D%3Dmax%280%2Cv_%7Bi%7D%5E%7B%28k%29%7D-%5Csigma%20g_%7Bi%7D%28x%5E%7B%28k%29%7D%29%29%2Ci%3D1%2C...%2Cl更新乘子,令k=k+1,转步骤2.

  笔记:对于广义乘子法求解不等式约束问题一般把罚函数构造成乘子修正公式:

例题:(用广义乘子法求解)

由乘子修正公式:

3.3 一般约束问题的广义乘子法

算法5 一般约束问题的广义乘子罚函数法

  1. 给定初点eq?x%5E%7B%281%29%7D,初始乘子向量eq?v%5E%7B%281%29%7D,初始罚因子eq?%5Csigma%20_%7B1%7D,放大系数eq?%5Cgamma%20%3E%201,常数eq?%5Cbeta%20%5Cin%20%280%2C1%29允许误差eq?%5Cvarepsilon%20%3E0,置k=1。
  2. eq?x%5E%7B%28k%29%7D为初始点,固定eq?v%3Dv%5E%7B%28k%29%7D求解无约束问题eq?min%5C%3B%20%5Cvarphi%20%28x%2Cw%2Cv%2C%5Csigma%20%29得最优解eq?x%5E%7B%28k+1%29%7D
  3. 如果eq?c%28x%5E%7B%28k+1%29%7D%29%3C%5Cvarepsilon,则停止计算,eq?x%5E%7B%28k+1%29%7D为约束问题eq?min%20f%28x%29的近似最优解;否 则,进行步骤4。
  4. eq?%5Cfrac%7Bc%28x%5E%7B%28k+1%29%7D%29%7D%7Bc%28x%5E%7B%28k%29%7D%29%7D%5Cgeq%20%5Cbeta,令eq?%5Csigma%20_%7Bk+1%7D%3D%5Cgamma%20%5Csigma%20_%7Bk%7D,否则转步骤5;否则,进行步骤5。
  5. fd61f4ccf74d49d4bf9f273da4728c6c.png更新乘子,令k=k+1,转步骤2.

  笔记:对于广义乘子法求解一般约束问题一般把罚函数构造成乘子修正公式:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值