在开发并发应用程序时,我们经常面临一个共同的问题:如何处理多个线程同时访问共享资源的情况,以确保数据的一致性和完整性。为了解决这个问题,悲观锁和乐观锁成为了常用的并发控制策略。我将详细介绍悲观锁与乐观锁的概念,及其使用。
一、悲观锁
悲观锁的核心思想是,在整个数据处理过程中始终假设最坏的情况:即认为其他线程随时都可能修改共享资源,因此在访问共享资源之前,会先锁定资源,确保其他线程无法修改它,待当前线程完成操作后再释放锁。这种策略保证了数据的一致性,但也带来了一定的性能开销。
悲观锁的一个典型应用场景是数据库事务处理。在数据库中,当一个事务对某个数据进行读写操作时,会对该数据加上排他锁(Exclusive Lock),确保在该事务完成之前,其他事务无法读取或修改该数据。只有当当前事务释放锁后,其他事务才能访问该数据。
下面是一个简单的悲观锁示例,假设有两个线程同时对一个共享变量进行递增操作:
class Counter {
private int value;
public synchronized void increment() {
value++;
}
}
在上面的例子中,通过使用synchronized
关键字对increment()
方法进行同步,确保同一时间只有一个线程能够执行递增操作。其他线程在执行递增操作之前会被阻塞,直到当前线程完成操作。
悲观锁的优点是简单易用,并且能够确保数据的一致性。然而,它的性能开销较大,在高并发场景下可能导致性能瓶颈。
二、乐观锁
与悲观锁相反,乐观锁的核心思想是假设在整个数据处理过程中,没有其他线程会修改共享资源,因此无需加锁。它通过在读取共享资源之前记录一个版本号(或时间戳),在更新数据时比较版本号,如果发现其他线程已经修改了数据,则放弃更新操作,重新尝试或执行相应的处理逻辑。
乐观锁的一个常见应用是使用CAS(Compare and Swap)操作来实现。CAS是一种无锁算法,它通过比较内存中的值与期望值是否一致,如果一致则进行更新,否则重新尝试。
下面是一个使用乐观锁的示例,假设有多个线程同时对一个共享变量进行递增操作:
import java.util.concurrent.atomic.AtomicInteger;
class Counter {
private AtomicInteger value = new AtomicInteger(0);
public void increment() {
int oldValue;
int newValue;
do {
oldValue = value.get();
newValue = oldValue + 1;
} while (!value.compareAndSet(oldValue, newValue));
}
}
在上面的例子中,通过使用AtomicInteger
类和compareAndSet()
方法,实现了无锁的递增操作。当多个线程同时调用increment()
方法时,每个线程会读取当前的值,计算新的值,并尝试使用compareAndSet()
方法进行更新。如果更新失败,则说明其他线程已经修改了值,当前线程会重新读取最新的值并重试更新操作。
乐观锁的优点是性能较高,适用于读多写少的场景。然而,它无法保证数据的一致性,可能导致数据的丢失或覆盖。
三、总结
悲观锁和乐观锁是常用的并发控制策略,用于处理多个线程同时访问共享资源的情况。悲观锁通过加锁来保证数据的一致性,适用于写多读多的场景,但性能开销较大。乐观锁通过假设其他线程不会修改共享资源来提高性能,适用于读多写少的场景,但无法保证数据的一致性。
在实际应用中,我们需要根据具体场景选择适合的并发控制策略。如果数据的一致性是首要考虑因素,可以选择悲观锁;如果性能是关键要求,并且可以容忍一定的数据不一致性,可以选择乐观锁。
还有就是乐观锁的实现方式有多种,大家可以多去扩展(CAS与版本号的实现方式)。