网络模型应用实例

import torch
import torchvision
from PIL import Image
from torch import nn

image_path = "D:/test pytorch/images/dog.png"
# 读取图片
image = Image.open(image_path)
image = image.convert('RGB')

# png格式的图片是4通道类型,RGB只有三通道,所以调用image = image.convert('RGB')保留其颜色通道。若本来就是三通道,加上这一步也可以。均适用
print(image)

# 网络要求32*32,但是图片显示201*176,对其resize
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

 # 加载网络模型
class SUN(nn.Module):
    def __init__(self):
        super(SUN, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x =self.model(x)
        return x
model = torch.load("sun_0.path")

# 实验结果可看,预测结果不准确,实验结果预测是第二个,但实际在模型中,是第五个类别才是狗,原因是,训练次数的不足
# model = torch.load("sun_29.path")
# 报错显示,在GPU上运行的,使用在CPU上,需要加语句;
# model = torch.load("sun_29.path",map_location = torch.device('cpu'))

print(model)

# 报错:Given groups=1, weight of size [32, 3, 5, 5], expected input[1, 4, 32, 32] to have 3 channels, but got 4 channels instead
image = torch.reshape(image,(1,3,32,32))
# 当模型出现dropout或者batchnormal下述2条就需要下述两条语句
model.eval()
with torch.no_grad():
    output = model(image)

output = model(image)
print(output)
print(output.argmax(1))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值