\subsection{BERT与Transformer的区别}
BERT(Bidirectional Encoder Representations from Transformers)和Transformer是深度学习中的两个重要模型。Transformer是一个广泛应用于自然语言处理(NLP)任务的基础架构,而BERT则是在Transformer的基础上发展而来的,它专注于如何在NLP任务中通过预训练与微调的方式获得强大的语言理解能力。虽然BERT基于Transformer,但两者在模型架构、训练方式和应用场景等方面有显著的区别。以下将详细讲解BERT与Transformer的区别。
\textbf{BERT}(Bidirectional Encoder Representations from Transformers)与 \textbf{Transformer} 之间的关系可以理解为:BERT 是以 Transformer 为基础架构的预训练语言模型,但它并不是 Transformer 的全部。要理解两者的区别,必须从架构、功能、用途和设计思想等多个层面进行详细解析。
\subsubsection{Transformer模型概述}
Transformer模型由Vaswani等人在2017年提出,目的是为了克服传统RNN(Recurrent Neural Network)和LSTM(Long Short-Term Memory)在处理长文本时的局限性。Transformer的核心创新是引入了自注意力机制(Self-Attention),使得模型能够在处理序列时并行计算,从而提高了计算效率。
Transformer模型的基本架构包含了两个主要部分:编码器(Encoder)和解码器(Decoder)。每个编码器和解码器由若干个相同的层堆叠而成,下面详细介绍它们的结构。
\begin{itemize}
\item \textbf{编码器(Encoder)}:每个编码器层由两个子层组成:自注意力子层和前馈神经网络子层。自注意力子层用于捕捉输入序列中各个词语之间的关系,而前馈神经网络子层则对每个位置的输出进行进一步处理。每个子层后面都跟着一个残差连接和层归一化(Layer Normalization)。
\item \textbf{解码器(Decoder)}:解码器的结构与编码器类似,但它还引入了额外的“编码器-解码器注意力”机制,用于利用编码器的输出。解码器也有自注意力、编码器-解码器注意力和前馈神经网络三个子层。
\end{itemize}
Transformer模型的关键部分是自注意力机制(Self-Attention),它能够捕捉输入序列中各个位置之间的依赖关系。例如,对于句子“BERT is a model”,自注意力机制会根据每个单词的上下文计算一个加权的表示。
Transformer中的自注意力机制的计算公式为:
\[
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
\]
其中,$Q$、$K$和$V$分别表示查询(Query)、键(Key)和值(Value)矩阵,$d_k$是键的维度,$\text{softmax}$函数用于将计算出的注意力权重归一化。
\subsubsection{BERT模型概述}
BERT是由Google于2018年提出的模型,\textbf{它基于Transformer的编码器部分}。与传统的Transformer相比,BERT的创新在于其采用了“掩蔽语言模型”(Masked Language Model,MLM)预训练策略,能够同时利用上下文信息进行训练,从而提高了语言理解能力。
BERT模型由多层Transformer编码器堆叠而成,其中每一层包含自注意力子层和前馈神经网络子层。BERT的最大特点是其双向性(Bidirectional),即它能够同时考虑一个词汇的左侧和右侧上下文信息。这与传统的语言模型(如GPT)不同,后者仅仅是单向的(从左到右或从右到左)。
BERT的训练流程分为两个阶段:预训练和微调。
\begin{itemize}
\item \textbf{预训练(Pre-training)}:BERT的预训练阶段包括两个任务:
\begin{itemize}
\item \textbf{掩蔽语言模型(MLM)}:在输入的文本中随机掩蔽一些单词,BERT需要根据上下文来预测这些掩蔽的单词。这个任务使得BERT能够捕捉到上下文中的语义信息。
\item \textbf{下一个句子预测(NSP)}:BERT还需要预测给定的两个句子是否是连续的。这个任务帮助BERT理解句子之间的关系,增强了模型的上下文理解能力。
\end{itemize}
\item \textbf{微调(Fine-tuning)}:在预训练完成后,BERT可以通过微调来适应特定的下游任务(如文本分类、命名实体识别、问答等)。在微调阶段,模型会根据任务目标调整权重,适应特定的应用场景。
\end{itemize}
BERT的预训练使得模型能够从大量无标注文本中学习语言表示,微调后则能应用于多种具体任务。
\subsubsection{BERT与Transformer的主要区别}
尽管BERT和Transformer都基于Transformer架构,但两者在结构、训练目标和应用方面有显著的不同。以下是BERT与Transformer的主要区别:
\begin{enumerate}
\item \textbf{模型结构}:
\begin{itemize}
\item \textbf{Transformer}:包含编码器和解码器,广泛应用于序列到序列(Sequence-to-Sequence)任务,如机器翻译。Transformer的解码器负责生成输出序列。
\item \textbf{BERT}:只使用Transformer的编码器部分,专注于处理输入文本的表示。BERT不用于生成文本,因此没有解码器部分。
\end{itemize}
\item \textbf{训练目标}:
\begin{itemize}
\item \textbf{Transformer}:Transformer的训练通常采用的是监督学习,目标是通过输入输出的映射进行优化。例如,在机器翻译任务中,Transformer的目标是将源语言句子映射到目标语言句子。
\item \textbf{BERT}:BERT的训练目标包括掩蔽语言模型(MLM)和下一个句子预测(NSP),这使得BERT能够进行无监督的预训练,学习到强大的语言表示。
\end{itemize}
\item \textbf{上下文信息的使用}:
\begin{itemize}
\item \textbf{Transformer}:Transformer通常使用的是单向的上下文(例如,GPT模型是从左到右的单向模型),自回归方式:
\[
P(x_t | x_{<t}) = \text{Decoder}(x_{<t})
\]
\item \textbf{BERT}:BERT是双向的,它同时考虑输入句子的左侧和右侧上下文信息,从而获得更加全面的语言表示。
\[
P(x_t | x_{/t}) = \text{Encoder}(\{x_1, \dots, \hat{x}_t, \dots, x_n\})
\]
\end{itemize}
\item \textbf{应用场景}:
\begin{itemize}
\item \textbf{Transformer}:Transformer广泛应用于序列到序列任务,如机器翻译、文本生成等。它的解码器使得其能够生成输出序列。
\item \textbf{BERT}:BERT主要用于语言理解任务,如文本分类、命名实体识别、问答系统等。BERT通过预训练和微调的方式,能够适应多种NLP任务。
\end{itemize}
\end{enumerate}
\subsubsection{总结}
BERT与Transformer的主要区别在于结构和训练目标。Transformer是一个通用的框架,包含了编码器和解码器,适用于各种序列到序列的任务;而BERT则只使用Transformer的编码器部分,专注于语言理解任务,通过掩蔽语言模型和下一个句子预测等任务进行预训练,从而获得强大的语言表示能力。BERT通过双向上下文的学习,能够更好地理解文本的语义,因此在多个NLP任务中表现出色。
\begin{itemize}
\item Transformer 原始结构允许构造顺序建模器(如 GPT);
\item BERT 修改了训练目标,使模型理解整个句子,而非逐词生成;
\item 因此,BERT 擅长分类、问答、命名实体识别等理解类任务;
\item Transformer 的 Decoder 则更适合生成任务,如翻译、摘要等。
\end{itemize}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
\textbf{组件} & \textbf{BERT} & \textbf{完整 Transformer} \\
\hline
结构 & 多层 Encoder & Encoder + Decoder \\
输入序列 & 被掩码的完整句子 & 源句(输入)+ 目标句(输出) \\
目标任务 & 理解(分类、问答) & 生成(翻译、对话) \\
输出形式 & 每个 token 的 contextual embedding & 生成目标 token 序列 \\
\hline
\end{tabular}
\end{center}
\begin{enumerate}
\item Transformer 是一种架构,BERT 是一种具体的模型;
\item Transformer 包括 Encoder + Decoder,BERT 仅包含 Encoder;
\item BERT 使用 Masked LM 进行双向训练,Transformer 原始形式通常用于单向生成;
\item BERT 的输出为词的上下文表示,Transformer 可输出目标序列;
\item 应用方向不同:BERT 用于理解类任务,Transformer 可用于理解和生成。
\end{enumerate}